Abstract This study applies psychological models of interest and motivation (i.e., a model of interest‐development and self‐determination theory) to the experiences of six preservice science Noyce scholars who participated in a teacher preparation program. The National Science Foundation's Noyce grant aims to incentivize mathematics and science majors to teach in high‐needs school districts. Through this interview study, we sought to understand how Noyce scholars' pre‐existing interests and their experiences in the Noyce program interact to develop individual commitments to teach in high‐needs school settings. Case studies reveal that scholars had no prior experiences in high‐needs schools, abstract ideas about teachers, students, and resources in these contexts, and varying degrees of initial connectedness to teaching in high‐needs school settings. Scholars found that site visits to diverse high‐needs schools (i.e., rural and urban) triggered their interest to teach in similar contexts. Preservice science teachers' emerging interest and level of commitment to teaching in high‐needs schools following the teacher preparation program was dependent upon context‐specific mastery experiences and autonomy within their long‐term clinical field experience. This study offers implications for teacher educators who are recruiting and preparing students to teach in high‐needs school contexts.
more »
« less
This content will become publicly available on October 24, 2025
Engaging diverse high school students in immersive learning experiences to encourage interest in hardware engineering.
Fostering high school students' interest in hardware computing is crucial due to the industry's workforce shortage. Our study aimed to cultivate interest through an inclusive, hands-on curriculum integrating circuit simulations, FPGAs, and collaborative projects. We conducted a six-week seminar with six senior high school students, assessing their interest development through surveys and focus groups. Results showed a transition from triggered situational interest to a more sustained form.
more »
« less
- Award ID(s):
- 2142473
- PAR ID:
- 10567798
- Publisher / Repository:
- 2024 AECT International Convention
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Considering the prevalence of mathematics teacher shortages in the United States, together with declining enrollments in teacher preparation programs, it is crucial for districts and teacher preparation programs alike to investigate new recruitment initiatives. In this pilot study, a university aimed to increase high school students’ interest in mathematics and mathematics teaching through a 1-week summer mathematics camp led by university undergraduates who were participating in an experiential learning program in mathematics teaching. The undergraduates engaged the high school students in activities chosen to allow exploration and discovery related to advanced mathematics topics. High school students expressed highly positive perceptions of the mathematics camp outcomes. Furthermore, participants experienced increased interest in mathematics at the end of the week and approximately one-third of participants attributed the camp to improving their likelihood of entering a teacher preparation program. Participants highlighted the positive classroom environment and focus on social emotional learning as strong contributors to the success of the camp. Implications for future research and practice are discussed.more » « less
-
Researchers have emphasized how the high school STEM-themed career academy model benefits ethnically and racially diverse learners by promoting positive STEM identities and raising the interest of students to pursue STEM college and career pathways. The purpose of this study was to examine the reasons why Black boys participated in a high school academy of engineering. We were also interested in identifying academy features that helped promote (or inhibit) positive STEM identities among Black male students. In this qualitative study, we used data from 17 Black male high school academy of engineering students. We analyzed the interview transcripts using a constant comparative method. Using an embedded case study approach, we compared our findings to the community cultural wealth (CCW) factors and the factors that researchers have found to influence students’ STEM identities. We found that the participants brought six forms of capital with them that served as sources of motivation to participate in the program. The forms of capital that were related to the CCW framework included aspirational, familial, navigational, resistance, and social. While we did not uncover linguistic capital in our data analysis, we did find an additional source of capital that was not reflected in the CCW framework. We found that the Black boys had natural STEM talent based on the formation of STEM identities. The students had high aptitudes in STEM-related subjects, and they were engaged by participating in hands-on activities. We recommend that schools integrate STEM curricula for Black boys and provide Black men to serve as STEM role models through guest speaking opportunities, job shadowing, mentoring, internships, and other work-based learning experiences.more » « less
-
null (Ed.)Research on K-12 integrated STEM settings suggests that engineering design activities play an important role in supporting students’ science learning. Moreover, the National Academies of Sciences, Engineering, and Medicine named improvement in science achievement as an objective of K-12 engineering education. Despite promising findings and the theorized importance of engineering education on science learning, there is little literature that investigates the impact of independent engineering design courses on students’ science learning at the high school level. This sparse exploration motivates our work-in-progress study, which explores the impact of high school students’ exposure to engineering design curriculum on their interest in science through a semi-structured student focus group method. This study is a part of a National Science Foundation-funded project that investigates the implementation of [de-identified program], a yearlong high school course that introduces students across the United States to engineering design principles. The Fall 2020 student focus group protocol built on the [de-identified program] 2019-2020 protocol with the addition of a science interest item to the existing engineering self-efficacy and interest items. Approximately thirty-minute semi-structured student focus groups were conducted and recorded via Zoom, then the transcripts and notes were analyzed using an in-vivo coding method. Our preliminary findings suggest that future studies should aim to gain a deeper understanding of the influence standalone engineering design courses have on students’ science interests and explore the role engineering design teachers play in increasing students’ interest in science.more » « less
-
Objectives. The increasing demand for computing skills has led to a rapid rise in the development of new computer science (CS) curricula, many with the goal of equitably broadening participation of underrepresented students in CS. While such initiatives are vital, factors outside of the school environment also play a role in influencing students’ interests. In this paper, we examined the effects of students’ perceived parental support on their interest in computer programming and explored the mechanisms through which this effect may have been established as students participated in an introductory CS instructional unit. Participants. This instructional unit was implemented with upper primary (grade 5) school students and was designed to broaden trajectories for participation in CS. The participants in the current study (N=170) came from six classrooms in two rural schools in the western United States. Study Method. The seven-week instructional unit began with students playing a commercial CS tabletop board game that highlighted fundamental programming concepts, and transitioned to having students create their own board game levels in the block-based programming language, Scratch. Further, because the board game could be taken home, the instructional unit offered opportunities to involve the family in school-based CS activities. To investigate the effect of students’ perception of parental (specifically father and mother) support on their interest in and self-efficacy to pursue CS, we surveyed students before and after the unit’s implementations and explored the structural relationship of the data using structural equation modeling (SEM). Results. We present three findings. First, the combined effect of students’ perceived mother’s and father’s support measured prior to the implementation (pre-survey) predicted students’ self-efficacy (Std B = 0.37, SE = 0.010, p < .001) and interest in computer programming (Std B = 0.328, SE = 0.134, p < .003) measured after the implementation (post-survey). Secondly, the combined effect of perceived mother and father support (Std B = 0.132, 95% CI [0.039, 0.399], 99% CI [0.017, 0.542]) on students’ interest was mediated by whether or not they took the CS board game home. Conclusions. Our findings indicate that perceived parental support has the potential to play an important role in students’ self-efficacy and interest in computer programming and that providing opportunities for students to bring CS artifacts home has the potential to further affect students’ interest in computer programming.more » « less