skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Poster: Minimizing Data Movement Using Distant Futures
Scientific workflows execute a series of tasks where each task may consume data as an input and produce data as an output. Within these workflows, tasks often produce intermediate results that may serve as inputs to subsequent tasks within the workflow. These results can vary in size and may need to be transported to another worker node. Data movement can become the primary bottleneck for many scientific workflows thus minimizing the cost of data movement can provide a significant performance benefit for a given workflow. Distant futures enable transfers between worker nodes, eliminating the need for intermediate results to pass through a centralized manager for future tasks invocations. Additionally, asynchronous transfers enable increased concurrency by preventing the blocking of task invocations. This poster shows the performance benefit received from the implementation of distant futures within a workflow that produces numerous intermediate results.  more » « less
Award ID(s):
1931348
PAR ID:
10567840
Author(s) / Creator(s):
;
Publisher / Repository:
SC23: The International Conference for High Performance Computing, Networking, Storage, and Analysis
Date Published:
Format(s):
Medium: X
Institution:
SC23: The International Conference for High Performance Computing, Networking, Storage, and Analysis
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientific workflows drive most modern large-scale science breakthroughs by allowing scientists to define their computations as a set of jobs executed in a given order based on their data dependencies. Workflow management systems (WMSs) have become key to automating scientific workflows-executing computational jobs and orchestrating data transfers between those jobs running on complex high-performance computing (HPC) platforms. Traditionally, WMSs use files to communicate between jobs: a job writes out files that are read by other jobs. However, HPC machines face a growing gap between their storage and compute capabilities. To address that concern, the scientific community has adopted a new approach called in situ, which bypasses costly parallel filesystem I/O operations with faster in-memory or in-network communications. When using in situ approaches, communication and computations can be interleaved. In this work, we leverage the Decaf in situ dataflow framework to accelerate task-based scientific workflows managed by the Pegasus WMS, by replacing file communications with faster MPI messaging. We propose a new execution engine that uses Decaf to manage communications within a sub-workflow (i.e., set of jobs) to optimize inter-job communications. We consider two workflows in this study: (i) a synthetic workflow that benchmarks and compares file- and MPI-based communication; and (ii) a realistic bioinformatics workflow that computes mu-tational overlaps in the human genome. Experiments show that in situ communication can improve the bioinformatics workflow execution time by 22% to 30% compared with file communication. Our results motivate further opportunities and challenges for bridging traditional WMSs with in situ frameworks. 
    more » « less
  2. The prevalence of scientific workflows with high computational demands calls for their execution on various distributed computing platforms, including large-scale leadership-class high-performance computing (HPC) clusters. To handle the deployment, monitoring, and optimization of workflow executions, many workflow systems have been developed over the past decade. There is a need for workflow benchmarks that can be used to evaluate the performance of workflow systems on current and future software stacks and hardware platforms. We present a generator of realistic workflow benchmark specifications that can be translated into benchmark code to be executed with current workflow systems. Our approach generates workflow tasks with arbitrary performance characteristics (CPU, memory, and I/O usage) and with realistic task dependency structures based on those seen in production workflows. We present experimental results that show that our approach generates benchmarks that are representative of production workflows, and conduct a case study to demonstrate the use and usefulness of our generated benchmarks to evaluate the performance of workflow systems under different configuration scenarios. 
    more » « less
  3. Workflow systems provide a convenient way for users to write large-scale applications by composing independent tasks into large graphs that can be executed concurrently on high-performance clus- ters. In many newer workflow systems, tasks are often expressed as a combination of function invocations in a high-level language. Because necessary code and data are not statically known prior to execution, they must be moved into the cluster at runtime. An obvious way of doing this is to translate function invocations into self-contained executable programs and run them as usual, but this brings a hefty performance penalty: a function invocation now needs to piggyback its context with extra code and data to a remote node, and the remote node needs to take extra time to reconstruct the invocation’s context before executing it, both detrimental to lightweight short-running functions. A better solution for workflow systems is to treat functions and invocations as first-class abstractions: subsequent invocations of the same function on a worker node should only pay for the cost of context setup once and reuse the context between different invocations. The remaining problems lie in discovering, distributing, and retaining the reusable context among workers. In this paper, we discuss the rationale and design requirement of these mechanisms to support context reuse, and implement them in TaskVine, a data- intensive distributed framework and execution engine. Our results from executing a large-scale neural network inference application and a molecular design application show that treating functions and invocations as first-class abstractions reduces the execution time of the applications by 94.5% and 26.9%, respectively. 
    more » « less
  4. Researchers collaborating from different locations need a method to capture and store scientific workflow provenance that guarantees provenance integrity and reproducibility. As modern science is moving towards greater data accessibility, researchers also need a platform for open access data sharing. We propose SciLedger, a blockchain-based platform that provides secure, trustworthy storage for scientific workflow provenance to reduce research fabrication and falsification. SciLedger utilizes a novel invalidation mechanism that only invalidates necessary provenance records. SciLedger also allows for workflows with complex structures to be stored on a single blockchain so that researchers can utilize existing data in their scientific workflows by branching from and merging existing workflows. Our experimental results show that SciLedger provides an able solution for maintaining academic integrity and research flexibility within scientific workflows. 
    more » « less
  5. Modern scientific workflows are data-driven and are often executed on distributed, heterogeneous, high-performance computing infrastructures. Anomalies and failures in the work- flow execution cause loss of scientific productivity and inefficient use of the infrastructure. Hence, detecting, diagnosing, and mitigating these anomalies are immensely important for reliable and performant scientific workflows. Since these workflows rely heavily on high-performance network transfers that require strict QoS constraints, accurately detecting anomalous network perfor- mance is crucial to ensure reliable and efficient workflow execu- tion. To address this challenge, we have developed X-FLASH, a network anomaly detection tool for faulty TCP workflow transfers. X-FLASH incorporates novel hyperparameter tuning and data mining approaches for improving the performance of the machine learning algorithms to accurately classify the anoma- lous TCP packets. X-FLASH leverages XGBoost as an ensemble model and couples XGBoost with a sequential optimizer, FLASH, borrowed from search-based Software Engineering to learn the optimal model parameters. X-FLASH found configurations that outperformed the existing approach up to 28%, 29%, and 40% relatively for F-measure, G-score, and recall in less than 30 evaluations. From (1) large improvement and (2) simple tuning, we recommend future research to have additional tuning study as a new standard, at least in the area of scientific workflow anomaly detection. 
    more » « less