skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing Terrestrial Paleoclimate and Paleoecology with Fossil Leaves Using Digital Leaf Physiognomy and Leaf Mass Per Area
Award ID(s):
1924390
PAR ID:
10567882
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
JOVE
Date Published:
Journal Name:
Journal of Visualized Experiments
Issue:
212
ISSN:
1940-087X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Summary Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed.Here, we analyzedRdarkvariability and its associations withVcmaxand other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative.We found that leaf magnesium and calcium concentrations were more significant in explaining cross‐siteRdarkthan commonly used traits like LMA, N and P concentrations, but univariate trait–Rdarkrelationships were always weak (r2 ≤ 0.15) and forest‐specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait–Rdarkrelationships, accurately predicted cross‐siteRdark(r2 = 0.65) and pinpointed the factors contributing toRdarkvariability.Our findings reveal a few novel traits with greater cross‐site scalability regardingRdark, challenging the use of empirical trait–Rdarkrelationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimatingRdark, which could ultimately improve process modeling of terrestrial plant respiration. 
    more » « less