skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Objective Evolutionary Architecture Search for Parameterized Quantum Circuits
Recent work on hybrid quantum-classical machine learning systems has demonstrated success in utilizing parameterized quantum circuits (PQCs) to solve the challenging reinforcement learning (RL) tasks, with provable learning advantages over classical systems, e.g., deep neural networks. While existing work demonstrates and exploits the strength of PQC-based models, the design choices of PQC architectures and the interactions between different quantum circuits on learning tasks are generally underexplored. In this work, we introduce a Multi-objective Evolutionary Architecture Search framework for parameterized quantum circuits (MEAS-PQC), which uses a multi-objective genetic algorithm with quantum-specific configurations to perform efficient searching of optimal PQC architectures. Experimental results show that our method can find architectures that have superior learning performance on three benchmark RL tasks, and are also optimized for additional objectives including reductions in quantum noise and model size. Further analysis of patterns and probability distributions of quantum operations helps identify performance-critical design choices of hybrid quantum-classical learning systems.  more » « less
Award ID(s):
2117377
PAR ID:
10568002
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Entropy
Volume:
25
Issue:
1
ISSN:
1099-4300
Page Range / eLocation ID:
93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum Computing has attracted much research attention because of its potential to achieve fundamental speed and efficiency improvements in various domains. Among different quantum algorithms, Parameterized Quantum Circuits (PQC) for Quantum Machine Learning (QML) show promises to realize quantum advantages on the current Noisy Intermediate-Scale Quantum (NISQ) Machines. Therefore, to facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community's attention on the reversed direction: ML for quantum. Specifically, the TorchQuantum library also supports using data-driven ML models to solve problems in quantum system research, such as predicting the impact of quantum noise on circuit fidelity and improving the quantum circuit compilation efficiency. This paper presents a case study of the ML for quantum part in TorchQuantum. Since estimating the noise impact on circuit reliability is an essential step toward understanding and mitigating noise, we propose to leverage classical ML to predict noise impact on circuit fidelity. Inspired by the natural graph representation of quantum circuits, we propose to leverage a graph transformer model to predict the noisy circuit fidelity. We firstly collect a large dataset with a variety of quantum circuits and obtain their fidelity on noisy simulators and real machines. Then we embed each circuit into a graph with gate and noise properties as node features, and adopt a graph transformer to predict the fidelity. We can avoid exponential classical simulation cost and efficiently estimate fidelity with polynomial complexity. Evaluated on 5 thousand random and algorithm circuits, the graph transformer predictor can provide accurate fidelity estimation with RMSE error 0.04 and outperform a simple neural network-based model by 0.02 on average. It can achieve 0.99 and 0.95 R2 scores for random and algorithm circuits, respectively. Compared with circuit simulators, the predictor has over 200× speedup for estimating the fidelity. The datasets and predictors can be accessed in the TorchQuantum library. 
    more » « less
  2. Parameterized Quantum Circuits (PQC) are promising towards quantum advantage on near-term quantum hardware. However, due to the large quantum noises (errors), the performance of PQC models has a severe degradation on real quantum devices. Take Quantum Neural Network (QNN) as an example, the accuracy gap between noise-free simulation and noisy results on IBMQ-Yorktown for MNIST-4 classification is over 60%. Existing noise mitigation methods are general ones without leveraging unique characteristics of PQC; on the other hand, existing PQC work does not consider noise effect. To this end, we present QuantumNAT, a PQC-specific framework to perform noise-aware optimizations in both training and inference stages to improve robustness. We experimentally observe that the effect of quantum noise to PQC measurement outcome is a linear map from noise-free outcome with a scaling and a shift factor. Motivated by that, we propose post-measurement normalization to mitigate the feature distribution differences between noise-free and noisy scenarios. Furthermore, to improve the robustness against noise, we propose noise injection to the training process by inserting quantum error gates to PQC according to realistic noise models of quantum hardware. Finally, post-measurement quantization is introduced to quantize the measurement outcomes to discrete values, achieving the denoising effect. Extensive experiments on 8 classification tasks using 6 quantum devices demonstrate that QuantumNAT improves accuracy by up to 43%, and achieves over 94% 2-class, 80% 4-class, and 34% 10-class classification accuracy measured on real quantum computers. The code for construction and noise-aware training of PQC is available in the TorchQuantum library. 
    more » « less
  3. De novo peptide design exhibits great potential in materials engineering, particularly for the use of plastic-binding peptides to help remediate microplastic pollution. There are no known peptide binders for many plastics—a gap that can be filled with de novo design. Current computational methods for peptide design exhibit limitations in sampling and scaling that could be addressed with quantum computing. Hybrid quantum-classical methods can leverage complementary strengths of near-term quantum algorithms and classical techniques for complex tasks like peptide design. This work introduces a hybrid quantum-classical generative framework for designing plastic-binding peptides combining variational quantum circuits with a variational autoencoder network. We demonstrate the framework’s effectiveness in generating peptide candidates, evaluate its efficiency for property-oriented design, and validate the candidates with molecular dynamics simulations. This quantum computing–based approach could accelerate the development of biomolecular tools for environmental and biomedical applications while advancing the study of biomolecular systems through quantum technologies. 
    more » « less
  4. Generative modeling is a flavor of machine learning with applications ranging from computer vision to chemical design. It is expected to be one of the techniques most suited to take advantage of the additional resources provided by near-term quantum computers. Here, we implement a data-driven quantum circuit training algorithm on the canonical Bars-and-Stripes dataset using a quantum-classical hybrid machine. The training proceeds by running parameterized circuits on a trapped ion quantum computer and feeding the results to a classical optimizer. We apply two separate strategies, Particle Swarm and Bayesian optimization to this task. We show that the convergence of the quantum circuit to the target distribution depends critically on both the quantum hardware and classical optimization strategy. Our study represents the first successful training of a high-dimensional universal quantum circuit and highlights the promise and challenges associated with hybrid learning schemes. 
    more » « less
  5. Despite the potential of reinforcement learning (RL) for building general-purpose robotic systems, training RL agents to solve robotics tasks still remains challenging due to the difficulty of exploration in purely continuous action spaces. Addressing this problem is an active area of research with the majority of focus on improving RL methods via better optimization or more efficient exploration. An alternate but important component to consider improving is the interface of the RL algorithm with the robot. In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy. These parameterized primitives are expressive, simple to implement, enable efficient exploration and can be transferred across robots, tasks and environments. We perform a thorough empirical study across challenging tasks in three distinct domains with image input and a sparse terminal reward. We find that our simple change to the action interface substantially improves both the learning efficiency and task performance irrespective of the underlying RL algorithm, significantly outperforming prior methods which learn skills from offline expert data. Code and videos at https://mihdalal.github.io/raps/ 
    more » « less