skip to main content


Title: QuantumNAT: quantum noise-aware training with noise injection, quantization and normalization
Parameterized Quantum Circuits (PQC) are promising towards quantum advantage on near-term quantum hardware. However, due to the large quantum noises (errors), the performance of PQC models has a severe degradation on real quantum devices. Take Quantum Neural Network (QNN) as an example, the accuracy gap between noise-free simulation and noisy results on IBMQ-Yorktown for MNIST-4 classification is over 60%. Existing noise mitigation methods are general ones without leveraging unique characteristics of PQC; on the other hand, existing PQC work does not consider noise effect. To this end, we present QuantumNAT, a PQC-specific framework to perform noise-aware optimizations in both training and inference stages to improve robustness. We experimentally observe that the effect of quantum noise to PQC measurement outcome is a linear map from noise-free outcome with a scaling and a shift factor. Motivated by that, we propose post-measurement normalization to mitigate the feature distribution differences between noise-free and noisy scenarios. Furthermore, to improve the robustness against noise, we propose noise injection to the training process by inserting quantum error gates to PQC according to realistic noise models of quantum hardware. Finally, post-measurement quantization is introduced to quantize the measurement outcomes to discrete values, achieving the denoising effect. Extensive experiments on 8 classification tasks using 6 quantum devices demonstrate that QuantumNAT improves accuracy by up to 43%, and achieves over 94% 2-class, 80% 4-class, and 34% 10-class classification accuracy measured on real quantum computers. The code for construction and noise-aware training of PQC is available in the TorchQuantum library.  more » « less
Award ID(s):
1730449
NSF-PAR ID:
10439469
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
In Proceedings of the 59th ACM/IEEE Design Automation Conference
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research has explored a higher level of optimization by making the quantum circuits themselves resilient to noise.In this paper, we propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing quantum neural networks for machine learning and variational ansatzes for quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search from parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates (e.g., U3 and CU3) and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates in a fine-grained manner.Extensively evaluated with 12 quantum machine learning (QML) and variational quantum eigensolver (VQE) benchmarks on 14 quantum computers, QuantumNAS significantly outperforms noise-unaware search, human, random, and existing noise-adaptive qubit mapping baselines. For QML tasks, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real quantum computers. It also achieves the lowest eigenvalue for VQE tasks on H 2 , H 2 O, LiH, CH 4 , BeH 2 compared with UCCSD baselines. We also open-source the TorchQuantum library for fast training of parameterized quantum circuits to facilitate future research. 
    more » « less
  2. Quantum computing testbeds exhibit high-fidelity quantum control over small collections of qubits, enabling performance of precise, repeatable operations followed by measurements. Currently, these noisy intermediate-scale devices can support a sufficient number of sequential operations prior to decoherence such that near term algorithms can be performed with proximate accuracy (like chemical accuracy for quantum chemistry problems). While the results of these algorithms are imperfect, these imperfections can help bootstrap quantum computer testbed development. Demonstrations of these algorithms over the past few years, coupled with the idea that imperfect algorithm performance can be caused by several dominant noise sources in the quantum processor, which can be measured and calibrated during algorithm execution or in post-processing, has led to the use of noise mitigation to improve typical computational results. Conversely, benchmark algorithms coupled with noise mitigation can help diagnose the nature of the noise, whether systematic or purely random. Here, we outline the use of coherent noise mitigation techniques as a characterization tool in trapped-ion testbeds. We perform model-fitting of the noisy data to determine the noise source based on realistic physics focused noise models and demonstrate that systematic noise amplification coupled with error mitigation schemes provides useful data for noise model deduction. Further, in order to connect lower level noise model details with application specific performance of near term algorithms, we experimentally construct the loss landscape of a variational algorithm under various injected noise sources coupled with error mitigation techniques. This type of connection enables application-aware hardware codesign, in which the most important noise sources in specific applications, like quantum chemistry, become foci of improvement in subsequent hardware generations.

     
    more » « less
  3. Modern machine learning algorithms typically require large amounts of labeled training data to fit a reliable model. To minimize the cost of data collection, researchers often employ techniques such as crowdsourcing and web scraping. However, web data and human annotations are known to exhibit high margins of error, resulting in sizable amounts of incorrect labels. Poorly labeled training data can cause models to overfit to the noise distribution, crippling performance in real-world applications. In this work, we investigate the viability of using data augmentation in conjunction with semi-supervised learning to improve the label noise robustness of image classification models. We conduct several experiments using noisy variants of the CIFAR-10 image classification dataset to benchmark our method against existing algorithms. Experimental results show that our augmentative SSL approach improves upon the state-of-the-art.

     
    more » « less
  4. Modern machine learning algorithms typically require large amounts of labeled training data to fit a reliable model. To minimize the cost of data collection, researchers often employ techniques such as crowdsourcing and web scraping. However, web data and human annotations are known to exhibit high margins of error, resulting in sizable amounts of incorrect labels. Poorly labeled training data can cause models to overfit to the noise distribution, crippling performance in real-world applications. In this work, we investigate the viability of using data augmentation in conjunction with semi-supervised learning to improve the label noise robustness of image classification models. We conduct several experiments using noisy variants of the CIFAR-10 image classification dataset to benchmark our method against existing algorithms. Experimental results show that our augmentative SSL approach improves upon the state-of-the-art. 
    more » « less
  5. Abstract

    Variational hybrid quantum-classical algorithms (VHQCAs) are near-term algorithms that leverage classical optimization to minimize a cost function, which is efficiently evaluated on a quantum computer. Recently VHQCAs have been proposed for quantum compiling, where a target unitaryUis compiled into a short-depth gate sequenceV. In this work, we report on a surprising form of noise resilience for these algorithms. Namely, we find one often learns the correct gate sequenceV(i.e. the correct variational parameters) despite various sources of incoherent noise acting during the cost-evaluation circuit. Our main results are rigorous theorems stating that the optimal variational parameters are unaffected by a broad class of noise models, such as measurement noise, gate noise, and Pauli channel noise. Furthermore, our numerical implementations on IBM’s noisy simulator demonstrate resilience when compiling the quantum Fourier transform, Toffoli gate, and W-state preparation. Hence, variational quantum compiling, due to its robustness, could be practically useful for noisy intermediate-scale quantum devices. Finally, we speculate that this noise resilience may be a general phenomenon that applies to other VHQCAs such as the variational quantum eigensolver.

     
    more » « less