Abstract The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012≲Mhalo/M⊙≲ 1013, 10 ≲rkpc−1≲ 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted-for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.
more »
« less
Effects of Multichannel Active Galactic Nuclei Feedback in FIRE Cosmological Simulations of Massive Galaxies
Abstract Feedback from supermassive black holes is believed to be a critical driver of the observed color bimodality of galaxies above the Milky Way mass scale. Active galactic nuclei (AGN) feedback has been modeled in many galaxy formation simulations, but most implementations have involved simplified prescriptions or a coarse-grained interstellar medium (ISM). We present the first set of Feedback In Realistic Environments (FIRE)-3 cosmological zoom-in simulations with AGN feedback evolved toz∼ 0, examining the impact of AGN feedback on a set of galaxies with halos in the mass range 1012–1013M⊙. These simulations combine detailed stellar and ISM physics with multichannel AGN feedback including radiative feedback, mechanical outflows, and, in some simulations, cosmic rays (CRs). We find that massive (>L*) galaxies in these simulations can match local scaling relations including the stellar mass–halo mass relation and theMBH–σrelation; in the stronger model with CRs, they also match the size–mass relation and the Faber–Jackson relation. Many of the massive galaxies in the simulations with AGN feedback have quenched star formation and elliptical morphologies, in qualitative agreement with observations. In contrast, simulations at the massive end without AGN feedback produce galaxies that are too massive and form stars too rapidly, are order-of-magnitude too compact, and have velocity dispersions well above Faber–Jackson. Despite these successes, the AGN models analyzed do not produce uniformly realistic galaxies when the feedback parameters are held constant: While the stronger model produces the most realistic massive galaxies, it tends to overquench the lower-mass galaxies. This indicates that further refinements of the AGN modeling are needed.
more »
« less
- PAR ID:
- 10568017
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 973
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 149
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012 Mhalo/Me 1013, 10 r kpc−1 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.more » « less
-
Context.Feedback from stars in the form of radiation, stellar winds, and supernovae is crucial to regulating the star formation activity of galaxies. Dwarf galaxies are especially susceptible to these processes, making them an ideal test bed for studying the effects of stellar feedback in detail. Recent numerical models have aimed to resolve the interstellar medium (ISM) in dwarf galaxies with a very high resolution of several solar masses. However, when it comes to modeling the radiative feedback from stars, many models opt for simplified approaches instead of explicitly solving radiative transfer (RT) because of the computational complexity involved. Aims.We introduce the Realistic ISM modeling in Galaxy Evolution and Lifecycles (RIGEL) model, a novel framework to self-consistently model the effects of stellar feedback in the multiphase ISM of dwarf galaxies with explicit RT on a star-by-star basis. Methods.The RIGEL model integrates detailed implementations of feedback from individual massive stars into the state-of-the-art radiation-hydrodynamics code,AREPO-RT. It forms individual massive stars from the resolved multiphase ISM by sampling the initial mass function and tracks their evolution individually. The lifetimes, photon production rates, mass-loss rates, and wind velocities of these stars are determined by their initial masses and metallicities based on a library that incorporates a variety of stellar models. The RT equations are solved explicitly in seven spectral bins accounting for the infrared to He IIionizing bands, using a moment-base scheme with the M1 closure relation. The thermochemistry model tracks the nonequilibrium H, He chemistry as well as the equilibrium abundance of C I, C II, O I, O II, and CO in the irradiated ISM to capture the thermodynamics of all ISM phases, from cold molecular gas to hot ionized gas. Results.We evaluated the performance of the RIGEL model using 1 M⊙resolution simulations of isolated dwarf galaxies. We found that the star formation rate (SFR) and interstellar radiation field (ISRF) show strong positive correlations with the metallicity of the galaxy. Photoionization and photoheating can reduce the SFR by an order of magnitude by removing the available cold, dense gas fuel for star formation. The presence of ISRF also significantly changes the thermal structure of the ISM. Radiative feedback occurs immediately after the birth of massive stars and rapidly disperses the molecular clouds within 1 Myr. As a consequence, radiative feedback reduces the age spread of star clusters to less than 2 Myr, prohibits the formation of massive star clusters, and shapes the cluster initial mass function to a steep power-law form with a slope of ∼ − 2. The mass-loading factor (measured atz = 1 kpc) of the fiducial galaxy has a median ofηM ∼ 50, while turning off radiative feedback reduces this factor by an order of magnitude. Conclusions.We demonstrate that RIGEL effectively captures the nonlinear coupling of early radiative feedback and supernova feedback in the multiphase ISM of dwarf galaxies. This novel framework enables the utilization of a comprehensive stellar feedback and ISM model in cosmological simulations of dwarf galaxies and various galactic environments spanning a wide dynamic range in both space and time.more » « less
-
Star clusters stand at the crossroads between galaxies and single stars. Resolving the formation of star clusters in cosmological simulations represents an ambitious and challenging goal, since modelling their internal properties requires very high resolution. This paper is the third of a series within the SImulating the Environment where Globular clusters Emerged (SIEGE) project, where we conduct zoom-in cosmological simulations with sub-parsec resolution that include the feedback of individual stars, aimed to model the formation of star clusters in high-redshift proto-galaxies. We investigate the role of three fundamental quantities in shaping the intrinsic properties of star clusters, i.e., (i) pre-supernova stellar feedback (continuous or instantaneous ejection of mass and energy through stellar winds); (ii) star formation efficiency, defined as the fraction of gas converted into stars per freefall time, for which we test 2 different values (ϵff= 0.1 and 1), and (iii) stellar initial mass function (IMF, standard vs top-heavy). All our simulations are run down toz= 10.5, which is sufficient for investigating some structural properties of the emerging clumps and clusters. Among the analysed quantities, the gas properties are primarily sensitive to the feedback prescriptions. A gentle and continuous feedback from stellar winds originates a complex, filamentary cold gas distribution, opposite to explosive feedback, causing smoother clumps. The prescription for a continuous, low-intensity feedback, along with the adoption of ϵff= 1, also produces star clusters with maximum stellar density values up to 104Mʘpc−2, in good agreement with the surface density-size relation observed in local young star clusters (YSCs). Therefore, a realistic stellar wind description and a high star formation effiency are the key ingredients that allow us to achieve realistic star clusters characterised by properties comparable to those of local YSCs. In contrast, the other models produce too diffuse clusters, in particular the one with a top-heavy IMF.more » « less
-
Abstract The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume Romulus25, with stellar masses between log(M*/M⊙) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theMBH–σrelation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔMBH, is compared to the potential of its host viaσ. We find that SMBHs with accreted mass aboveMBH–σare more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civcolumn densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of the MBH–σrelation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy.more » « less
An official website of the United States government

