ABSTRACT Giant molecular clouds (GMCs) are well studied in the local Universe, however, exactly how their properties vary during galaxy evolution is poorly understood due to challenging resolution requirements, both observational and computational. We present the first time-dependent analysis of GMCs in a Milky Way-like galaxy and an Large Magellanic Cloud (LMC)-like dwarf galaxy of the FIRE-2 (Feedback In Realistic Environments) simulation suite, which have sufficient resolution to predict the bulk properties of GMCs in cosmological galaxy formation self-consistently. We show explicitly that the majority of star formation outside the galactic centre occurs within self-gravitating gas structures that have properties consistent with observed bound GMCs. We find that the typical cloud bulk properties such as mass and surface density do not vary more than a factor of 2 in any systematic way after the first Gyr of cosmic evolution within a given galaxy from its progenitor. While the median properties are constant, the tails of the distributions can briefly undergo drastic changes, which can produce very massive and dense self-gravitating gas clouds. Once the galaxy forms, we identify only two systematic trends in bulk properties over cosmic time: a steady increase in metallicity produced by previous stellar populations and a weak decrease in bulk cloud temperatures. With the exception of metallicity, we find no significant differences in cloud properties between the Milky Way-like and dwarf galaxies. These results have important implications for cosmological star and star cluster formation and put especially strong constraints on theories relating the stellar initial mass function to cloud properties. 
                        more » 
                        « less   
                    
                            
                            Playing with FIRE: A Galactic Feedback-halting Experiment Challenges Star Formation Rate Theories
                        
                    
    
            Abstract Stellar feedback influences the star formation rate (SFR) and the interstellar medium of galaxies in ways that are difficult to quantify numerically, because feedback is an essential ingredient of realistic simulations. To overcome this, we conduct a feedback-halting experiment starting with a Milky Way–mass galaxy in the second-generation Feedback In Realistic Environments (FIRE-2) simulation framework. By terminating feedback, and comparing to a simulation in which feedback is maintained, we monitor how the runs diverge. We find that without feedback, the interstellar turbulent velocities decay. There is a marked increase of dense material, while the SFR increases by over an order of magnitude. Importantly, this SFR boost is a factor of ∼15–20 larger than is accounted for by the increased freefall rate caused by higher densities. This implies that feedback moderates the star formation efficiency per freefall time more directly than simply through the density distribution. To probe changes at the scale of giant molecular clouds (GMCs), we identify GMCs using density and virial parameter thresholds, tracking clouds as the galaxy evolves. Halting feedback stimulates rapid changes, including a proliferation of new bound clouds, a decrease of turbulent support in loosely bound clouds, an overall increase in cloud densities, and a surge of internal star formation. Computing the cloud-integrated SFR using several theories of turbulence regulation, we show that these theories underpredict the surge in SFR by at least a factor of 3. We conclude that galactic star formation is essentially feedback regulated on scales that include GMCs, and that stellar feedback affects GMCs in multiple ways. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10568018
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 973
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 40
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)ABSTRACT To investigate how molecular clouds react to different environmental conditions at a galactic scale, we present a catalogue of giant molecular clouds (GMCs) resolved down to masses of ∼10 M⊙ from a simulation of the entire disc of an interacting M51-like galaxy and a comparable isolated galaxy. Our model includes time-dependent gas chemistry, sink particles for star formation, and supernova feedback, meaning we are not reliant on star formation recipes based on threshold densities and can follow the physics of the cold molecular phase. We extract GMCs from the simulations and analyse their properties. In the disc of our simulated galaxies, spiral arms seem to act merely as snowplows, gathering gas, and clouds without dramatically affecting their properties. In the centre of the galaxy, on the other hand, environmental conditions lead to larger, more massive clouds. While the galaxy interaction has little effect on cloud masses and sizes, it does promote the formation of counter-rotating clouds. We find that the identified clouds seem to be largely gravitationally unbound at first glance, but a closer analysis of the hierarchical structure of the molecular interstellar medium shows that there is a large range of virial parameters with a smooth transition from unbound to mostly bound for the densest structures. The common observation that clouds appear to be virialized entities may therefore be due to CO bright emission highlighting a specific level in this hierarchical binding sequence. The small fraction of gravitationally bound structures found suggests that low galactic star formation efficiencies may be set by the process of cloud formation and initial collapse.more » « less
- 
            null (Ed.)Abstract We present a large suite of MHD simulations of turbulent, star-forming giant molecular clouds (GMCs) with stellar feedback, extending previous work by simulating 10 different random realizations for each point in the parameter space of cloud mass and size. It is found that once the clouds disperse due to stellar feedback, both self-gravitating star clusters and unbound stars generally remain, which arise from the same underlying continuum of substructured stellar density, ie. the hierarchical cluster formation scenario. The fraction of stars that are born within gravitationally-bound star clusters is related to the overall cloud star formation efficiency set by stellar feedback, but has significant scatter due to stochastic variations in the small-scale details of the star-forming gas flow. We use our numerical results to calibrate a model for mapping the bulk properties (mass, size, and metallicity) of self-gravitating GMCs onto the star cluster populations they form, expressed statistically in terms of cloud-level distributions. Synthesizing cluster catalogues from an observed GMC catalogue in M83, we find that this model predicts initial star cluster masses and sizes that are in good agreement with observations, using only standard IMF and stellar evolution models as inputs for feedback. Within our model, the ratio of the strength of gravity to stellar feedback is the key parameter setting the masses of star clusters, and of the various feedback channels direct stellar radiation (photon momentum and photoionization) is the most important on GMC scales.more » « less
- 
            Abstract We present a rich, multiwavelength, multiscale database built around the PHANGS–ALMA CO (2 − 1) survey and ancillary data. We use this database to present the distributions of molecular cloud populations and subgalactic environments in 80 PHANGS galaxies, to characterize the relationship between population-averaged cloud properties and host galaxy properties, and to assess key timescales relevant to molecular cloud evolution and star formation. We show that PHANGS probes a wide range of kpc-scale gas, stellar, and star formation rate (SFR) surface densities, as well as orbital velocities and shear. The population-averaged cloud properties in each aperture correlate strongly with both local environmental properties and host galaxy global properties. Leveraging a variable selection analysis, we find that the kpc-scale surface densities of molecular gas and SFR tend to possess the most predictive power for the population-averaged cloud properties. Once their variations are controlled for, galaxy global properties contain little additional information, which implies that the apparent galaxy-to-galaxy variations in cloud populations are likely mediated by kpc-scale environmental conditions. We further estimate a suite of important timescales from our multiwavelength measurements. The cloud-scale freefall time and turbulence crossing time are ∼5–20 Myr, comparable to previous cloud lifetime estimates. The timescales for orbital motion, shearing, and cloud–cloud collisions are longer, ∼100 Myr. The molecular gas depletion time is 1–3 Gyr and shows weak to no correlations with the other timescales in our data. We publish our measurements online, and expect them to have broad utility to future studies of molecular clouds and star formation.more » « less
- 
            Abstract Stellar winds contain enough energy to easily disrupt the parent cloud surrounding a nascent star cluster, and for this reason they have long been considered candidates for regulating star formation. However, direct observations suggest most wind power is lost, and Lancaster et al. recently proposed that this is due to efficient mixing and cooling processes. Here we simulate star formation with wind feedback in turbulent, self-gravitating clouds, extending our previous work. Our simulations cover clouds with an initial surface density of 10 2 –10 4 M ⊙ pc −2 and show that star formation and residual gas dispersal are complete within two to eight initial cloud freefall times. The “efficiently cooled” model for stellar wind bubble evolution predicts that enough energy is lost for the bubbles to become momentum-driven; we find that this is satisfied in our simulations. We also find that wind energy losses from turbulent, radiative mixing layers dominate losses by “cloud leakage” over the timescales relevant for star formation. We show that the net star formation efficiency (SFE) in our simulations can be explained by theories that apply wind momentum to disperse cloud gas, allowing for highly inhomogeneous internal cloud structure. For very dense clouds, the SFE is similar to those observed in extreme star-forming environments. Finally, we find that, while self-pollution by wind material is insignificant in cloud conditions with moderate density (only ≲10 −4 of the stellar mass originated in winds), our simulations with conditions more typical of a super star cluster have star particles that form with as much as 1% of their mass in wind material.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    