Background:Athletes, especially female athletes, experience high rates of tibial bone stress injuries (BSIs). Knowledge of tibial loads during walking and running is needed to understand injury mechanisms and design safe running progression programs. Purpose:To examine tibial loads as a function of gait speed in male and female runners. Study Design:Controlled laboratory study. Methods:Kinematic and kinetic data were collected on 40 recreational runners (20 female, 20 male) during 4 instrumented gait speed conditions on a treadmill (walk, preferred run, slow run, fast run). Musculoskeletal modeling, using participant-specific magnetic resonance imaging and motion data, was used to estimate tibial stress. Peak tibial stress and stress-time impulse were analyzed using 2-factor multivariate analyses of variance (speed*sex) and post hoc comparisons (α = .05). Bone geometry and tibial forces and moments were examined. Results:Peak compression was influenced by speed ( P < .001); increasing speed generally increased tibial compression in both sexes. Women displayed greater increases in peak tension ( P = .001) and shear ( P < .001) than men when transitioning from walking to running. Further, women displayed greater peak tibial stress overall ( P < .001). Compressive and tensile stress-time impulse varied by speed ( P < .001) and sex ( P = .006); impulse was lower during running than walking and greater in women. A shear stress-time impulse interaction ( P < .001) indicated that women displayed greater impulse relative to men when changing from a walk to a run. Compared with men, women displayed smaller tibiae ( P < .001) and disproportionately lower tibial forces ( P≤ .001-.035). Conclusion:Peak tibial stress increased with gait speed, with a 2-fold increase in running relative to walking. Women displayed greater tibial stress than men and greater increases in stress when shifting from walking to running. Sex differences appear to be the result of smaller bone geometry in women and tibial forces that were not proportionately lower, given the womens’ smaller stature and lower mass relative to men. Clinical Relevance:These results may inform interventions to regulate running-related training loads and highlight a need to increase bone strength in women. Lower relative bone strength in women may contribute to a sex bias in tibial BSIs, and female runners may benefit from a slower progression when initiating a running program.
more »
« less
Sex Differences in Fat Distribution and Muscle Fat Infiltration in the Lower Extremity: A Retrospective Diverse-Ethnicity 7T MRI Study in a Research Institute Setting in the USA
Background: Fat infiltration in skeletal muscle is related to declining muscle strength, whereas excess subcutaneous fat is implicated in the development of metabolic diseases. Methods: Using multi-slice axial T2-weighted (T2w) MR images, this retrospective study characterized muscle fat infiltration (MFI) and fat distribution in the lower extremity of 107 subjects (64M/43F, age 11–79 years) with diverse ethnicities (including White, Black, Latino, and Asian subjects). Results: MRI data analysis shows that MFI, evaluated by the relative intensities of the pixel histogram profile in the calf muscle, tends to increase with both age and BMI. However, statistical significance was found only for the age correlation in women (p < 0.002), and the BMI correlation in men (p = 0.04). Sex disparities were also seen in the fat distribution, which was assessed according to subcutaneous fat thickness (SFT) and the fibula bone marrow cross-sectional area (BMA). SFT tends to decrease with age in men (p < 0.01), whereas SFT tends to increase with BMI only in women (p < 0.01). In contrast, BMA tends to increase with age in women (p < 0.01) and with BMI in men (p = 0.04). Additionally, MFI is positively correlated with BMA but not with SFT, suggesting that compromised bone structure may contribute to fat infiltration in the surrounding skeletal muscle. Conclusions: The findings of this study highlight a sex factor affecting MFI and fat distribution, which may offer valuable insights into effective strategies to prevent and treat MFI in women versus men.
more »
« less
- Award ID(s):
- 2138142
- PAR ID:
- 10568028
- Publisher / Repository:
- MDPI (Multidisciplinary Digital Publishing Institute)
- Date Published:
- Journal Name:
- Diagnostics
- Volume:
- 14
- Issue:
- 20
- ISSN:
- 2075-4418
- Page Range / eLocation ID:
- 2260
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PurposeBody composition MRI captures the distribution of fat and lean tissues throughout the body, and provides valuable biomarkers of obesity, metabolic disease, and muscle disorders, as well as risk assessment. Highly reproducible protocols have been developed for 1.5T and 3T MRI. The purpose of this work was to demonstrate the feasibility and test–retest repeatability of MRI body composition profiling on a 0.55T whole‐body system. MethodsHealthy adult volunteers were scanned on a whole‐body 0.55T MRI system using the integrated body RF coil. Experiments were performed to refine parameter settings such as TEs, resolution, flip angle, bandwidth, acceleration, and oversampling factors. The final protocol was evaluated using a test–retest study with subject removal and replacement in 10 adult volunteers (5 M/5F, age 25–60, body mass index 20–30). ResultsCompared to 1.5T and 3T, the optimal flip angle at 0.55T was higher (15°), due to the shorter T1 times, and the optimal echo spacing was larger, due to smaller chemical shift between water and fat. Overall image quality was comparable to conventional field strengths, with no significant issues with fat/water swapping or inadequate SNR. Repeatability coefficient of visceral fat, subcutaneous fat, total thigh muscle volume, muscle fat infiltration, and liver fat were 11.8 cL (2.2%), 46.9 cL (1.9%), 14.6 cL (0.5%), 0.1 pp (2%), and 0.2 pp (5%), respectively (coefficient of variation in parenthesis). ConclusionsWe demonstrate that 0.55T body composition MRI is feasible and present optimized scan parameters. The resulting images provide satisfactory quality for automated post‐processing and produce repeatable results.more » « less
-
Abstract Western diets are becoming increasingly common around the world. Western diets have high omega 6 (ω-6) and omega 3 (ω-3) fatty acids and are linked to bone loss in humans and animals. Dietary fats are not created equal; therefore, it is vital to understand the effects of specific dietary fats on bone. We aimed to determine how altering the endogenous ratios of ω-6:ω-3 fatty acids impacts bone accrual, strength, and fracture toughness. To accomplish this, we used the Fat-1 transgenic mice, which carry a gene responsible for encoding a ω-3 fatty acid desaturase that converts ω-6 to ω-3 fatty acids. Male and female Fat-1 positive mice (Fat-1) and Fat-1 negative littermates (WT) were given either a high-fat diet (HFD) or low-fat diet (LFD) at 4 wk of age for 16 wk. The Fat-1 transgene reduced fracture toughness in males. Additionally, male BMD, measured from DXA, decreased over the diet duration for HFD mice. In males, neither HFD feeding nor the presence of the Fat-1 transgene impacted cortical geometry, trabecular architecture, or whole-bone flexural properties, as detected by main group effects. In females, Fat-1-LFD mice experienced increases in BMD compared to WT-LFD mice; however, cortical area, distal femur trabecular thickness, and cortical stiffness were reduced in Fat-1 mice compared to pooled WT controls. However, reductions in stiffness were caused by a decrease in bone size and were not driven by changes in material properties. Together, these results demonstrate that the endogenous ω-6:ω-3 fatty acid ratio influences bone material properties in a sex-dependent manner. In addition, Fat-1 mediated fatty acid conversion was not able to mitigate the adverse effects of HFD on bone strength and accrual.more » « less
-
Background: Pastoralists live in challenging environments, which may be accompanied by unique activity, energy, and water requirements. Aim: Few studies have examined whether the demands of pastoralism contribute to differences in total energy expenditure (TEE) and water turnover (WT) compared to other lifestyles. Subjects and methods: Accelerometer-derived physical activity, doubly labelled water-derived TEE and WT, and anthropometric data were collected for 34 semi-nomadic Daasanach adults from three northern Kenyan communities with different levels of pastoralist activity. Daasanach TEEs and WTs were compared to those of other small-scale and industrialised populations. Results: When modelled as a function of fat-free-mass, fat-mass, age, and sex, TEE did not differ between Daasanach communities. Daasanach TEE (1564–4172 kcal/day) was not significantly correlated with activity and 91% of TEEs were within the range expected for individuals from comparison populations. Mean WT did not differ between Daasanach communities; Daasanach absolute (7.54 litres/day men; 7.46 litres/day women), mass-adjusted, and TEE-adjusted WT was higher than most populations worldwide. Conclusions: The similar mass-adjusted TEE of Daasanach and industrialised populations supports the hypothesis that habitual TEE is constrained, with physically demanding lifestyles necessitating trade-offs in energy allocation. Elevated WT in the absence of elevated TEE likely reflects a demanding active lifestyle in a hot, arid climate.more » « less
-
Abstract ObjectiveBone mineral density (BMD) and frame size are important predictors of future bone health, with smaller frame size and lower BMD associated with higher risk of later fragility fractures. We test the effects of body size, habitual use, and life history on frame size and cortical BMD of the radius and tibia in sample of healthy adult premenopausal women. MethodsWe used anthropometry and life history data from 123 women (age 18‐46) from rural Poland. Standard techniques were used to measure height, weight, and body fat. Life history factors were recorded using surveys. Grip strength was measured as a proxy for habitual activity, wrist breadth for skeletal frame size. Cortical BMD was measured at the one‐third distal point of the radius and mid‐point of the tibia using quantitative ultrasound (reported as speed of sound, SoS). ResultsRadial SoS was high (meant‐score 3.2 ± 1.6), but tibia SoS was average (meant‐score 0.35 ± 1.17). SoS was not associated with age, although wrist breadth was positively associated with age after adjusting for height. Radius SoS was not associated with measures of body size, habitual use, or life history factors. Wrist breadth was associated with body size (p < .05 for all), lean mass, and grip strength. Tibia SoS was associated with height. Life history factors were not associated with frame size or cortical SoS. ConclusionsHabitual use and overall body size are more strongly associated with frame size and cortical SoS than life history factors in this sample of healthy adult women.more » « less
An official website of the United States government

