Islands have long represented natural laboratories for studying many aspects of ecology and evolutionary biology, from speciation to community assembly. One aspect that has been well documented is the correlation between island size and taxonomic diversity, likely due to decreased complexity and population size on small islands. This same logic can apply to genetic diversity, which should predictably decrease with effective population size. The island size–diversity correlation has received support over the years but often focuses on single metrics of genetic diversity. Here, we useZosteropswhite-eyes in the Solomon Islands to study the correlation between island size and various metrics related to genetic diversity, including runs of homozygosity and fixation of transposable elements. We find that almost all these metrics strongly correlate with island size, and in turn with each other. We infer that island size is independently correlated with these different variables, demonstrating that population size impacts genomic metrics of diversity in a variety of ways across temporal and hierarchical scales.
more »
« less
This content will become publicly available on January 1, 2026
Genomic data reveal that the Cuban blue-headed quail-dove ( Starnoenas cyanocephala ) is a biogeographic relict
Islands are well known for their unique biodiversity and significance in evolutionary and ecological studies. Nevertheless, the extinction of island species accounts for most human-caused extinctions in recent time scales, which have accelerated in recent centuries. Pigeons and doves (Columbidae) are noteworthy for the high number of island endemics, as well as for the risks those species have faced since human arrival. On Caribbean islands, no other columbid has generated more phylogenetic interest and uncertainty than the blue-headed quail-dove,Starnoenas cyanocephala. This endangered Cuban endemic has been considered more similar, both behaviourally and phenotypically, to Australasian species than to the geographically closer ‘quail-dove’ (Geotrygons.l.) species of the Western Hemisphere. Here, we use whole genome sequencing fromStarnoenasand other newly sequenced columbids in combination with sequence data from previous publications to investigate its relationships. Phylogenomic analyses, which represent 35 of the 51 genera currently comprising the Columbidae, reveal that the blue-headed quail-dove is the sole representative of a lineage diverging early in the radiation of columbids.Starnoenasis sister to the species-rich subfamily Columbinae, which is found worldwide. As a highly distinctive evolutionary lineage lacking close modern relatives, we recommend elevating the conservation priority ofStarnoenas.
more »
« less
- PAR ID:
- 10568064
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Biology Letters
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 1744-957X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Worldwide decline in biodiversity during the Holocene has impeded a comprehensive understanding of pre-human biodiversity and biogeography. This is especially true on islands, because many recently extinct island taxa were morphologically unique, complicating assessment of their evolutionary relationships using morphology alone. The Caribbean remains an avian hotspot but was more diverse before human arrival in the Holocene. Among the recently extinct lineages is the enigmatic genus Nesotrochis, comprising three flightless species. Based on morphology, Nesotrochis has been considered an aberrant rail (Rallidae) or related to flufftails (Sarothruridae). We recovered a nearly complete mitochondrial genome of Nesotrochis steganinos from fossils, discovering that it is not a rallid but instead is sister to Sarothruridae, volant birds now restricted to Africa and New Guinea, and the recently extinct, flightless Aptornithidae of New Zealand. This result suggests a widespread or highly dispersive most recent common ancestor of the group. Prior to human settlement, the Caribbean avifauna had a far more cosmopolitan origin than is evident from extant species.more » « less
-
Abstract Allen's Hummingbird comprises two subspecies, one migratory (Selasphorus sasin sasin) and one nonmigratory (S. s. sedentarius). The nonmigratory subspecies, previously endemic to the California Channel Islands, apparently colonized the California mainland on the Palos Verdes Peninsula some time before 1970 and now breeds throughout coastal southern California. We sequenced and compared populations of mainland nonmigratory Allen's Hummingbird to Channel Island populations from Santa Catalina, San Clemente, and Santa Cruz Island. We found no evidence of founder effects on the mainland population. Values of nucleotide diversity on the mainland were higher than on the Channel Islands. There were low levels of divergence between the Channel Islands and the mainland, and Santa Cruz Island was the most genetically distinct. Ecological niche models showed that rainfall and temperature variables on the Channel Islands are similar in the Los Angeles basin and predicted continued expansion of nonmigratory Allen's Hummingbird north along the coast and inland. We also reviewed previous genetic studies of vertebrate species found on the Channel Islands and mainland and showed that broad conclusions regarding island–mainland patterns remain elusive. Challenges include the idiosyncratic nature of colonization itself as well as the lack of a comprehensive approach that incorporates similar markers and sampling strategies across taxa, which, within the context of a comparative study of island–mainland relationships, may lead to inconsistent results.more » « less
-
Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature’s most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropicalAnolislizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade.more » « less
-
Abstract Island systems provide important contexts for studying processes underlying lineage migration, species diversification, and organismal extinction. The Hawaiian endemic mints (Lamiaceae family) are the second largest plant radiation on the isolated Hawaiian Islands. We generated a chromosome-scale reference genome for one Hawaiian species,Stenogyne calaminthoides, and resequenced 45 relatives, representing 34 species, to uncover the continental origins of this group and their subsequent diversification. We further resequenced 109 individuals of twoStenogynespecies, and their purported hybrids, found high on the Mauna Kea volcano on the island of Hawai’i. The three distinct Hawaiian genera,Haplostachys,Phyllostegia, andStenogyne, are nested inside a fourth genus,Stachys. We uncovered four independent polyploidy events withinStachys, including one allopolyploidy event underlying the Hawaiian mints and their direct western North American ancestors. While the Hawaiian taxa may have principally diversified by parapatry and drift in small and fragmented populations, localized admixture may have played an important role early in lineage diversification. Our genomic analyses provide a view into how organisms may have radiated on isolated island chains, settings that provided one of the principal natural laboratories for Darwin’s thinking about the evolutionary process.more » « less
An official website of the United States government
