Abstract Laser processing of thermoelectric materials provides an avenue to influence the nano‐ and micro‐structure of the material and enable additive manufacturing processes that facilitate freeform device shapes, a capability that is lacking in thermoelectric materials processing. This paper describes the multiscale structures formed in selenium‐doped bismuth telluride, an n‐type thermoelectric material, from laser‐induced rapid melting and solidification. Macroscale samples are fabricated in a layer‐by‐layer technique using laser powder bed fusion (also known as selective laser melting). Laser processing results in highly textured columnar grains oriented in the build direction, nanoscale inclusions, and a shift in the primary charge carriers. Sparse oxide inclusions and tellurium segregation shift the material to p‐type behavior with a Seebeck coefficient that peaks at 143 µV K–1at 95 °C. With an average relative density of 74%, fabricated parts have multiscale porosity and microscale cracking that likely resulted from low powder layer packing density and processing parameters near the transition threshold between conduction and keyhole mode processing. These results provide insights regarding the pathways for influencing carrier transport in thermoelectric materials via laser melting‐induced nanoscale structuring and the laser processing parameters required to achieve effective powder consolidation and hierarchical structuring in thermoelectric parts.
more »
« less
Numerical Analysis of the Melt Pool Kinetics in Selective Laser Melting Based Additive Manufacturing of Thermoelectric Powders
Abstract Thermoelectric generators convert heat energy to electricity and can be used for waste heat recovery, enabling sustainable development. Selective Laser Melting (SLM) based additive manufacturing process is a scalable and flexible method that has shown promising results in manufacturing high zT Bi2Te3 material and is possible to be extended to other material classes such as Mg2Si. The physical phenomena of melting and solidification were investigated for SLM-based manufacturing of thermoelectric (Mg2Si) powders through comprehensive numerical models developed in MATLAB. In this study, Computational Fluid Dynamics (CFD)-based techniques were employed to solve conservation equations, enabling a detailed understanding of temperature evolution within the molten pool. This approach was critical for optimizing processing parameters in our investigation, which were also used for printing the Mg2Si powders using SLM. Additionally, a phase field-based model was developed to simulate the directional solidification of the Mg2Si in MATLAB. Microstructural parameters were studied to correlate the effects of processing parameters to the microstructure of Mg2Si.
more »
« less
- Award ID(s):
- 1527239
- PAR ID:
- 10568072
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8811-7
- Format(s):
- Medium: X
- Location:
- Knoxville, Tennessee, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Additive manufacturing allows fabrication of custom-shaped thermoelectric materials while minimizing waste, reducing processing steps, and maximizing integration compared to conventional methods. Establishing the process-structure-property relationship of laser additive manufactured thermoelectric materials facilitates enhanced process control and thermoelectric performance. This research focuses on laser processing of bismuth telluride (Bi 2 Te 3 ), a well-established thermoelectric material for low temperature applications. Single melt tracks under various parameters (laser power, scan speed and number of scans) were processed on Bi 2 Te 3 powder compacts. A detailed analysis of the transition in the melting mode, grain growth, balling formation, and elemental composition is provided. Rapid melting and solidification of Bi 2 Te 3 resulted in fine-grained microstructure with preferential grain growth along the direction of the temperature gradient. Experimental results were corroborated with simulations for melt pool dimensions as well as grain morphology transitions resulting from the relationship between temperature gradient and solidification rate. Samples processed at 25 W, 350 mm/s with 5 scans resulted in minimized balling and porosity, along with columnar grains having a high density of dislocations.more » « less
-
Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi 2 Te 3 , and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi 2 Te 3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices.more » « less
-
Advances in selective laser melting (SLM) of metals in the past two decades have made metals additive manufacturing more accessible for industrial adoption. Despite printing process improvements, post- processing of SLM components has not improved much, resulting in considerable costs, delay, and design limitations. Building upon recent advances in sensitization-based self-terminating etching processes, this work details a new set iodine-based sensitization and etching chemistries that simplify the post-processing of copper (Cu) alloy components fabricated using SLM. This work demonstrates that iodine can be used to ‘‘sensitize’’ the surface of copper alloy components to form soluble copper iodide salt that can be then dissolved in common solvents, such as acetonitrile. This process removes a predefined amount of material from all interior and exterior surfaces in a self-terminating manner, enabling facile removal of internal and external supports, removal of any trapped powder, and the smoothing of interior and exterior surfaces. We demonstrate this process on GRCop (Cu-chromium-niobium) alloys due to their widespread use by the rocket propulsion industry along with a demonstration in copper (110) for applications in heat exchangers and electromagnetic transmitters/receivers. Our results provide the first systematic study on the effect of iodi- zation temperature and duration on the thickness of the iodide region in GRCop-84 components. Additionally, the surface roughness before and after each iodization–dissolution was also quantified for GRCop-84 and showed 70% reduction in Ra roughness from a high of 10 lm as-printed to a low of 3 lm after four iodization-dissolution cycles.more » « less
-
Abstract: Waste energy harvest using thermoelectric (TE) materials will be a potential solution to the serious environmental pollution and energy shortage problems. Due to limitations of current manufacturing techniques in geometry complexity and high density, TE devices are not widely utilized in daily life to gather waste energy. 3D printing brings an opportunity to solve the fabrication limitations. In this paper, a hybrid process was developed to fabricate thermoelectric materials by integrating hot pressing with stereolithography. The mold and punch were designed and printed to fabricate thermoelectric devices used on hot water tubes via stereolithography. The Sb2Te3 powders filled the 3D printed mold in a layered manner, and each layer of powders was compacted under the pressing of punch at a certain temperature and compressive force. The polymer mold was removed after the sintering process to form the final TE components. A series of experiments were conducted to identify the optimal heating temperature and compressive force. The microstructures morphology and electrical conductivity of fabricated Sb2Te3 samples were evaluated. This research work conducted a scientific investigation into the fabrication of TE material with a hybrid process, including hot pressing and 3D printing, to solve the current manufacturing challenges, providing perspectives on developments of TE devices used in various energy harvest applications.more » « less
An official website of the United States government

