Laser processing of thermoelectric materials provides an avenue to influence the nano‐ and micro‐structure of the material and enable additive manufacturing processes that facilitate freeform device shapes, a capability that is lacking in thermoelectric materials processing. This paper describes the multiscale structures formed in selenium‐doped bismuth telluride, an n‐type thermoelectric material, from laser‐induced rapid melting and solidification. Macroscale samples are fabricated in a layer‐by‐layer technique using laser powder bed fusion (also known as selective laser melting). Laser processing results in highly textured columnar grains oriented in the build direction, nanoscale inclusions, and a shift in the primary charge carriers. Sparse oxide inclusions and tellurium segregation shift the material to p‐type behavior with a Seebeck coefficient that peaks at 143 µV K–1at 95 °C. With an average relative density of 74%, fabricated parts have multiscale porosity and microscale cracking that likely resulted from low powder layer packing density and processing parameters near the transition threshold between conduction and keyhole mode processing. These results provide insights regarding the pathways for influencing carrier transport in thermoelectric materials via laser melting‐induced nanoscale structuring and the laser processing parameters required to achieve effective powder consolidation and hierarchical structuring in thermoelectric parts.
more » « less- NSF-PAR ID:
- 10449934
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 8
- Issue:
- 15
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Additive manufacturing allows fabrication of custom-shaped thermoelectric materials while minimizing waste, reducing processing steps, and maximizing integration compared to conventional methods. Establishing the process-structure-property relationship of laser additive manufactured thermoelectric materials facilitates enhanced process control and thermoelectric performance. This research focuses on laser processing of bismuth telluride (Bi 2 Te 3 ), a well-established thermoelectric material for low temperature applications. Single melt tracks under various parameters (laser power, scan speed and number of scans) were processed on Bi 2 Te 3 powder compacts. A detailed analysis of the transition in the melting mode, grain growth, balling formation, and elemental composition is provided. Rapid melting and solidification of Bi 2 Te 3 resulted in fine-grained microstructure with preferential grain growth along the direction of the temperature gradient. Experimental results were corroborated with simulations for melt pool dimensions as well as grain morphology transitions resulting from the relationship between temperature gradient and solidification rate. Samples processed at 25 W, 350 mm/s with 5 scans resulted in minimized balling and porosity, along with columnar grains having a high density of dislocations.more » « less
-
Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi 2 Te 3 , and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi 2 Te 3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices.more » « less
-
Abstract Although ceramic particle‐metal matrix materials (i.e., cermets) can offer superior performance, manufacturing these materials via conventional means is difficult compared to the manufacturing of metal alloys. This study leverages the laser powder bed fusion (LPBF) process to additively manufacture dense tungsten carbide (WC)‐17 wt.% nickel (Ni) composite specimens using novel spherical, sintered‐agglomerated composite powder. A range of processing parameters yielding high‐density specimens was discovered using a sequential series of experiments comprised of single bead, multi‐layer, and cylindrical builds. Cylinders with a relative density >99% were fabricated and characterized in terms of microstructure, chemical composition, and hardness. Scanning electron microscopy images show favorable wetting between the Ni binder and carbide particles without any phase segregation and laser processing increased the average carbide particle size. Energy dispersive X‐ray and X‐ray diffraction analyses detected traces of secondary products after laser processing. For samples processed at high energy densities, complex carbides and carbon agglomerate phases were detected. The maximum hardness of 60.38 Rockwell C is achieved in the printed samples. The successful builds in this study open the way for LPBF of dense WC‐Ni parts with a large workable laser power‐laser velocity processing window.
-
Abstract A β‐FeSi2–SiGe nanocomposite is synthesized via a react/transform spark plasma sintering technique, in which eutectoid phase transformation, Ge alloying, selective doping, and sintering are completed in a single process, resulting in a greatly reduced process time and thermal budget. Hierarchical structuring of the SiGe secondary phase to achieve coexistence of a percolated network with isolated nanoscale inclusions effectively decouples the thermal and electrical transport. Combined with selective doping that reduces conduction band offsets, the percolation strategy produces overall electron mobilities 30 times higher than those of similar materials produced using typical powder‐processing routes. As a result, a maximum thermoelectric figure of merit
ZT of ≈0.7 at 700 °C is achieved in the β‐FeSi2–SiGe nanocomposite. -
We developed and applied a model-based feedforward control approach to reduce temperature-induced flaw formation in the laser powder bed fusion (LPBF) additive manufacturing process. The feedforward control is built upon three basic steps. First, the thermal history of the part is rapidly predicted using a mesh-free graph theory model. Second, thermal history metrics are extracted from the model to identify regions of heat buildup, symptomatic of flaw formation. Third, process parameters are changed layer-by-layer based on insights from the thermal model. This technique was validated with two identical build plates (Inconel 718). Parts on the first build plate were made under manufacturer recommended nominal process parameters. Parts on the second build plate were made with model optimized process parameters. Results were validated with in-situ infrared thermography, and materials characterization techniques. Parts produced under controlled processing exhibited superior geometric accuracy and resolution, finer grain size, and increased microhardness.more » « less