Abstract Humans and other primates have specialized visual pathways composed of interconnected cortical areas. The input area V1 contains neurons that encode basic visual features, whereas downstream in the lateral prefrontal cortex (LPFC) neurons acquire tuning for novel complex feature associations. It has been assumed that each cortical area is composed of repeatable neuronal subtypes, and variations in synaptic strength and connectivity patterns underlie functional specialization. Here we test the hypothesis that diversity in the intrinsic make-up of single neurons contributes to area specialization along the visual pathways. We measured morphological and electrophysiological properties of single neurons in areas V1 and LPFC of marmosets. Excitatory neurons in LPFC were larger, less excitable, and fired broader spikes than V1 neurons. Some inhibitory fast spiking interneurons in the LPFC had longer axons and fired spikes with longer latencies and a more depolarized action potential trough than in V1. Intrinsic bursting was found in subpopulations of both excitatory and inhibitory LPFC but not V1 neurons. The latter may favour temporal summation of spikes and therefore enhanced synaptic plasticity in LPFC relative to V1. Our results show that specialization within the primate visual system permeates the most basic processing level, the single neuron.
more »
« less
Running modulates primate and rodent visual cortex differently
When mice run, activity in their primary visual cortex (V1) is strongly modulated. This observation has altered conceptions of a brain region assumed to be a passive image processor. Extensive work has followed to dissect the circuits and functions of running-correlated modulation. However, it remains unclear whether visual processing in primates might similarly change during locomotion. We therefore measured V1 activity in marmosets while they viewed stimuli on a treadmill. In contrast to mouse, running-correlated modulations of marmoset V1 were small and tended to be slightly suppressive. Population-level analyses revealed trial-to-trial fluctuations of shared gain across V1 in both species, but while strongly correlated with running in mice, gain modulations were smaller and more often negatively correlated with running in marmosets. Thus, population-wide fluctuations of V1 may reflect a common feature of mammalian visual cortical function, but important quantitative differences point to distinct consequences for the relation between vision and action in primates versus rodents.
more »
« less
- Award ID(s):
- 2123568
- PAR ID:
- 10568105
- Publisher / Repository:
- eLife
- Date Published:
- Journal Name:
- eLife
- Volume:
- 12
- ISSN:
- 2050-084X
- Page Range / eLocation ID:
- RP87736
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Visual cortical responses are known to be highly variable across trials within an experimental session. However, the long-term stability of visual cortical responses is poorly understood. Here using chronic imaging of V1 in mice we show that neural responses to repeated natural movie clips are unstable across weeks. Individual neuronal responses consist of sparse episodic activity which are stable in time but unstable in gain across weeks. Further, we find that the individual episode, instead of neuron, serves as the basic unit of the week-to-week fluctuation. To investigate how population activity encodes the stimulus, we extract a stable one-dimensional representation of the time in the natural movie, using an unsupervised method. Most week-to-week fluctuation is perpendicular to the stimulus encoding direction, thus leaving the stimulus representation largely unaffected. We propose that precise episodic activity with coordinated gain changes are keys to maintain a stable stimulus representation in V1.more » « less
-
Abstract Perception of visual motion is important for a range of ethological behaviors in mammals. In primates, specific visual cortical regions are specialized for processing of coherent visual motion. However, whether mouse visual cortex has a similar organization remains unclear, despite powerful genetic tools available for measuring population neural activity. Here, we use widefield and 2-photon calcium imaging of transgenic mice to measure mesoscale and cellular responses to coherent motion. Imaging of primary visual cortex (V1) and higher visual areas (HVAs) during presentation of natural movies and random dot kinematograms (RDKs) reveals varied responsiveness to coherent motion, with stronger responses in dorsal stream areas compared to ventral stream areas. Moreover, there is considerable anisotropy within visual areas, such that neurons representing the lower visual field are more responsive to coherent motion. These results indicate that processing of visual motion in mouse cortex is distributed heterogeneously both across and within visual areas.more » « less
-
Abstract In dynamic environments, animals must closely monitor the effects of their actions to inform switches in behavioral strategy. Anterior cingulate cortex (ACC) neurons track decision outcomes in these environments. Yet, it remains unclear whether ACC neurons similarly monitor behavioral history in static environments and, if so, whether these signals are distinct from movement representations. We recorded large-scale ACC activity in freely moving mice making visual evidence-accumulation decisions. Many ACC neurons exhibited nonlinear mixed selectivity for previous choices and outcomes (trial history) and were modulated by movements. Trial history could be stably decoded from population activity and accounted for a separable component of neural activity than posture and movements. Trial history encoding was conserved across different subjects and was unaffected by fluctuating behavioral biases. These findings demonstrate that trial history monitoring in ACC is implemented in a conserved population code that is independent of the volatility of subjects’ task environment.more » « less
-
Abstract Many cognitive and sensory processes are characterized by strong relationships between the timing of neuronal spiking and the phase of ongoing local field potential oscillations. The coupling of neuronal spiking in neocortex to the phase of alpha oscillations (8-12 Hz) has been well studied in nonhuman primates but remains largely unexplored in other mammals. How this alpha modulation of spiking differs between brain areas and cell types, as well as its role in sensory processing and decision making, are not well understood. We used Neuropixels 1.0 probes to chronically record neural activity from somatosensory cortex, prefrontal cortex, striatum, and amygdala in mice performing a whisker-based selective detection task. We observed strong spontaneous alpha modulation of single-neuron spiking activity during inter-trial intervals while mice performed the task. The prevalence and strength of alpha phase modulation differed significantly across regions and between cell types. Phase modulated neurons exhibited stronger responses to both go and no-go stimuli, as well as stronger motor- and reward-related changes in firing rate, than their unmodulated counterparts. The increased responsiveness of phase modulated neurons suggests they are innervated by more diverse populations. Alpha modulation of neuronal spiking during baseline activity also correlated with task performance. In particular, many neurons exhibited strong alpha modulation before correct trials, but not before incorrect trials. These data suggest that dysregulation of spiking activity with respect to alpha oscillations may characterize lapses in attention.more » « less
An official website of the United States government

