skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 13, 2026

Title: Anterior cingulate cortex mixes retrospective cognitive signals and ongoing movement signatures during decision-making
Abstract In dynamic environments, animals must closely monitor the effects of their actions to inform switches in behavioral strategy. Anterior cingulate cortex (ACC) neurons track decision outcomes in these environments. Yet, it remains unclear whether ACC neurons similarly monitor behavioral history in static environments and, if so, whether these signals are distinct from movement representations. We recorded large-scale ACC activity in freely moving mice making visual evidence-accumulation decisions. Many ACC neurons exhibited nonlinear mixed selectivity for previous choices and outcomes (trial history) and were modulated by movements. Trial history could be stably decoded from population activity and accounted for a separable component of neural activity than posture and movements. Trial history encoding was conserved across different subjects and was unaffected by fluctuating behavioral biases. These findings demonstrate that trial history monitoring in ACC is implemented in a conserved population code that is independent of the volatility of subjects’ task environment.  more » « less
Award ID(s):
2219946
PAR ID:
10612361
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Subject(s) / Keyword(s):
decision-making,imaging,encoding models
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing work demonstrates that animals alternate between engaged and disengaged states during perceptual decision-making. To understand the neural signature of these states, we performed cortex-wide measurements of neural activity in mice making auditory decisions. The trial-averaged magnitude of neural activity was similar in the two states. However, the trial-to-trial variance in neural activity was higher during disengagement. To understand this increased variance, we trained separate linear encoding models on neural data from each state. The models demonstrated that although task variables and task-aligned movements impacted neural activity similarly during the two states, movements that are independent of task events explained more variance during disengagement. Behavioral analyses uncovered that during disengagement, movements become uncoupled to task events. Taken together, these results argue that the neural signature of disengagement, though obscured in trial-averaged neural activity, is evident in trial-to-trial variability driven by changing patterns of spontaneous movements. 
    more » « less
  2. Most sensorimotor studies investigating the covariation of populations of neurons in primary motor cortex (M1) have considered only a few trained movements made under highly constrained conditions. However, motor behaviors in daily living happen in a far more complex and varied contexts. It is unclear whether M1 neurons would have different population responses in a more naturalistic, unconstrained setting, including requirements to accommodate multiple limbs and body posture, and more extensive proprioceptive inputs. Here, we recorded M1 spiking signals while a monkey performed hand grasp movements in two different contexts: one in the typical constrained lab setting, and the other while moving freely in a large plastic cage. We compared the covariance patterns of the neural activity during movements across the two contexts. We found that the neural covariation patterns accompanying two different hand grasps in the unconstrained context were largely preserved, while they differed across contexts, even for the same type of grasp. We also found that the M1 population activity was confined to context-dependent neural manifolds, but these manifolds were not completely independent, as some dimensions appeared to be shared across the contexts. These results suggest that the coordinated activity of M1 neurons is strongly dependent on behavioral context, in ways that were not entirely anticipated. 
    more » « less
  3. Our muscles are the primary means through which we affect the external world, and the sense of agency (SoA) over the action through those muscles is fundamental to our self-awareness. However, SoA research to date has focused almost exclusively on agency over action outcomes rather than over the musculature itself, as it was believed that SoA over the musculature could not be manipulated directly. Drawing on methods from human–computer interaction and adaptive experimentation, we use human-in-the-loop Bayesian optimization to tune the timing of electrical muscle stimulation so as to robustly elicit a SoA over electrically actuated muscle movements in male and female human subjects. We use time-resolved decoding of subjects' EEG to estimate the time course of neural activity which predicts reported agency on a trial-by-trial basis. Like paradigms which assess SoA over action consequences, we found that the late (post-conscious) neural activity predicts SoA. Unlike typical paradigms, however, we also find patterns of early (sensorimotor) activity with distinct temporal dynamics predicts agency over muscle movements, suggesting that the “neural correlates of agency” may depend on the level of abstraction (i.e., direct sensorimotor feedback versus downstream consequences) most relevant to a given agency judgment. Moreover, fractal analysis of the EEG suggests that SoA-contingent dynamics of neural activity may modulate the sensitivity of the motor system to external input. SIGNIFICANCE STATEMENTThe sense of agency, the feeling of “I did that,” when directing one's own musculature is a core feature of human experience. We show that we can robustly manipulate the sense of agency over electrically actuated muscle movements, and we investigate the time course of neural activity that predicts the sense of agency over these actuated movements. We find evidence of two distinct neural processes: a transient sequence of patterns that begins in the early sensorineural response to muscle stimulation and a later, sustained signature of agency. These results shed light on the neural mechanisms by which we experience our movements as volitional. 
    more » « less
  4. Abstract Previous work shows that automatic attention biases toward recently selected target features transfer across action and perception and even across different effectors such as the eyes and hands on a trial-by-trial basis. Although these findings suggest a common neural representation of selection history across effectors, the extent to which information about recently selected target features is encoded in overlapping versus distinct brain regions is unknown. Using fMRI and a priming of pop-out task where participants selected unpredictable, uniquely colored targets among homogeneous distractors via reach or saccade, we show that color priming is driven by shared, effector-independent underlying representations of recent selection history. Consistent with previous work, we found that the intraparietal sulcus (IPS) was commonly activated on trials where target colors were switched relative to those where the colors were repeated; however, the dorsal anterior insula exhibited effector-specific activation related to color priming. Via multivoxel cross-classification analyses, we further demonstrate that fine-grained patterns of activity in both IPS and the medial temporal lobe encode information about selection history in an effector-independent manner, such that ROI-specific models trained on activity patterns during reach selection could predict whether a color was repeated or switched on the current trial during saccade selection and vice versa. Remarkably, model generalization performance in IPS and medial temporal lobe also tracked individual differences in behavioral priming sensitivity across both types of action. These results represent a first step to clarify the neural substrates of experience-driven selection biases in contexts that require the coordination of multiple actions. 
    more » « less
  5. Abstract The brain integrates activity across networks of interconnected neurons to generate behavioral outputs. Several physiological and imaging-based approaches have been previously used to monitor responses of individual neurons. While these techniques can identify cellular responses greater than the neuron’s action potential threshold, less is known about the events that are smaller than this threshold or are localized to subcellular compartments. Here we use NEAs to obtain temporary intracellular access to neurons allowing us to record information-rich data that indicates action potentials, and sub-threshold electrical activity. We demonstrate these recordings from primary hippocampal neurons, induced pluripotent stem cell-derived (iPSC) neurons, and iPSC-derived brain organoids. Moreover, our results show that our arrays can record activity from subcellular compartments of the neuron. We suggest that these data might enable us to correlate activity changes in individual neurons with network behavior, a key goal of systems neuroscience. 
    more » « less