skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Mamba in the Llama: Distilling and Accelerating Hybrid Models
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length.  more » « less
Award ID(s):
2037519
PAR ID:
10568129
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
NeurIPS
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. State-space models (SSMs), such as Mamba (Gu & Dao, 2023), have been proposed as alternatives to Transformer networks in language modeling, incorporating gating, convolutions, and input-dependent token selection to mitigate the quadratic cost of multi-head attention. Although SSMs exhibit competitive performance, their in-context learning (ICL) capabilities, a remarkable emergent property of modern language models that enables task execution without parameter optimization, remain less explored compared to Transformers. In this study, we evaluate the ICL performance of SSMs, focusing on Mamba, against Transformer models across various tasks. Our results show that SSMs perform comparably to Transformers in standard regression ICL tasks, while outperforming them in tasks like sparse parity learning. However, SSMs fall short in tasks involving non-standard retrieval functionality. To address these limitations, we introduce a hybrid model, MambaFormer, that combines Mamba with attention blocks, surpassing individual models in tasks where they struggle independently. Our findings suggest that hybrid architectures offer promising avenues for enhancing ICL in language models. 
    more » « less
  2. In this work, we propose a new efficient solution, which is a Mamba-based model named BMACE (Bidirectional Mamba-based network, for Automatic Chord Estimation), which utilizes selective structured state-space models in a bidirectional Mamba layer to effectively model temporal dependencies. Our model achieves high prediction performance comparable to state-of-the-art models, with the advantage of requiring fewer parameters and lower computational resources. 
    more » « less
  3. The remarkable success of the Transformer model in Natural Language Processing (NLP) is increasingly capturing the attention of vision researchers in contemporary times. The Vision Transformer (ViT) model effectively models long-range dependencies while utilizing a self-attention mechanism by converting image information into meaningful representations. Moreover, the parallelism property of ViT ensures better scalability and model generalization compared to Recurrent Neural Networks (RNN). However, developing robust ViT models for high-risk vision applications, such as self-driving cars, is critical. Deterministic ViT models are susceptible to noise and adversarial attacks and incapable of yielding a level of confidence in output predictions. Quantifying the confidence (or uncertainty) level in the decision is highly important in such real-world applications. In this work, we introduce a probabilistic framework for ViT to quantify the level of uncertainty in the model's decision. We approximate the posterior distribution of network parameters using variational inference. While progressing through non-linear layers, the first-order Taylor approximation was deployed. The developed framework propagates the mean and covariance of the posterior distribution through layers of the probabilistic ViT model and quantifies uncertainty at the output predictions. Quantifying uncertainty aids in providing warning signals to real-world applications in case of noisy situations. Experimental results from extensive simulation conducted on numerous benchmark datasets (e.g., MNIST and Fashion-MNIST) for image classification tasks exhibit 1) higher accuracy of proposed probabilistic ViT under noise or adversarial attacks compared to the deterministic ViT. 2) Self-evaluation through uncertainty becomes notably pronounced as noise levels escalate. Simulations were conducted at the Texas Advanced Computing Center (TACC) on the Lonestar6 supercomputer node. With the help of this vital resource, we completed all the experiments within a reasonable period. 
    more » « less
  4. Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency. We introduce a simple sequence model inspired by control systems that generalizes these approaches while addressing their shortcomings. The Linear State-Space Layer (LSSL) maps a sequence u↦y by simply simulating a linear continuous-time state-space representation ˙x=Ax+Bu,y=Cx+Du. Theoretically, we show that LSSL models are closely related to the three aforementioned families of models and inherit their strengths. For example, they generalize convolutions to continuous-time, explain common RNN heuristics, and share features of NDEs such as time-scale adaptation. We then incorporate and generalize recent theory on continuous-time memorization to introduce a trainable subset of structured matrices A that endow LSSLs with long-range memory. Empirically, stacking LSSL layers into a simple deep neural network obtains state-of-the-art results across time series benchmarks for long dependencies in sequential image classification, real-world healthcare regression tasks, and speech. On a difficult speech classification task with length-16000 sequences, LSSL outperforms prior approaches by 24 accuracy points, and even outperforms baselines that use hand-crafted features on 100x shorter sequences. 
    more » « less
  5. Emotion recognition is inherently a multimodal problem. Humans use both audible and visual cues to determine a person’s emotions. There has been extensive improvement in the methods we use to fuse audio and visual representations between two unimodal deep-learning models. However, there is a lack of accommodation for modalities that have a disparity in the amount of computational resources needed to provide the same amount of temporal information. As the sequence length increases, current methods often make simplifications such as discarding frames or cropping the sequence. This paper introduces a chunking methodology designed for cross-attention-based multimodal transformer architectures. The approach involves segmenting the visual input—the more computationally demanding modality—into chunks. Cross-attention is then performed between the encoded audio and visual features instead of the original sequence lengths of the unimodal backbones. Our method achieves significant improvements over conventional cross-attention techniques in the audio-visual domain for a six-class emotional recognition problem, demonstrating better F1 score, precision, and recall on the CREMA-D database while reducing computational overhead. 
    more » « less