Several face de-identification methods have been proposed to preserve users’ privacy by obscuring their faces. These methods, however, can degrade the quality of photos, and they usually do not preserve the utility of faces, i.e., their age, gender, pose, and facial expression. Recently, advanced generative adversarial network models, such as StyleGAN [ 33], have been proposed, which generate realistic, high-quality imaginary faces. In this paper, we investigate the use of StyleGAN in generating de-identified faces through style mixing, where the styles or features of the target face and an auxiliary face get mixed to generate a de-identified face that carries the utilities of the target face. We examined this de-identification method for preserving utility and privacy by implementing several face detection, verification, and identification attacks and conducting a user study. The results from our extensive experiments, human evaluation, and comparison with two state-of-the-art face de-identification methods, i.e., CIAGAN and DeepPrivacy, show that StyleGAN performs on par or better than these methods, preserving users’ privacy and images’ utility. In particular, the results of the machine learning-based experiments show that StyleGAN0-4 preserves utility better than CIAGAN and DeepPrivacy while preserving privacy at the same level. StyleGAN 0-3 preserves utility at the same level while providing more privacy. In this paper, for the first time, we also performed a carefully designed user study to examine both privacy and utility-preserving properties of StyleGAN 0-3, 0-4, and 0-5, as well as CIAGAN and DeepPrivacy from the human observers’ perspectives. Our statistical tests showed that participants tend to verify and identify StyleGAN 0-5 images easier than DeepPrivacy images. All the methods but StyleGAN 0-5 had significantly lower identification rates than CIAGAN. Regarding utility, as expected, StyleGAN 0-5 performed significantly better in preserving some attributes. Among all methods, on average, participants believe gender has been preserved the most while naturalness has been preserved the least.
more »
« less
Degradation learning and Skip-Transformer for blind face restoration
Blindrestoration of low-quality faces in the real world has advanced rapidly in recent years. The rich and diverse priors encapsulated by pre-trained face GAN have demonstrated their effectiveness in reconstructing high-quality faces from low-quality observations in the real world. However, the modeling of degradation in real-world face images remains poorly understood, affecting the property of generalization of existing methods. Inspired by the success of pre-trained models and transformers in recent years, we propose to solve the problem of blind restoration by jointly exploiting their power for degradation and prior learning, respectively. On the one hand, we train a two-generator architecture for degradation learning to transfer the style of low-quality real-world faces to the high-resolution output of pre-trained StyleGAN. On the other hand, we present a hybrid architecture, called Skip-Transformer (ST), which combines transformer encoder modules with a pre-trained StyleGAN-based decoder using skip layers. Such a hybrid design is innovative in that it represents the first attempt to jointly exploit the global attention mechanism of the transformer and pre-trained StyleGAN-based generative facial priors. We have compared our DL-ST model with the latest three benchmarks for blind image restoration (DFDNet, PSFRGAN, and GFP-GAN). Our experimental results have shown that this work outperforms all other competing methods, both subjectively and objectively (as measured by the Fréchet Inception Distance and NIQE metrics).
more »
« less
- Award ID(s):
- 2114644
- PAR ID:
- 10435001
- Date Published:
- Journal Name:
- Frontiers in Signal Processing
- Volume:
- 3
- ISSN:
- 2673-8198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A style mapper applies some fixed style to its input images (so, for example, taking faces to cartoons). This paper describes a simple procedure – JoJoGAN – to learn a style mapper from a single example of the style. JoJoGAN uses a GAN inversion procedure and StyleGAN’s style-mixing property to produce a substantial paired dataset from a single example style. The paired dataset is then used to fine-tune a StyleGAN. An image can then be style mapped by GAN-inversion followed by the fine-tuned StyleGAN. JoJoGAN needs just one reference and as little as 30 s of training time. JoJoGAN can use extreme style references (say, animal faces) successfully. Furthermore, one can control what aspects of the style are used and how much of the style is applied. Qualitative and quantitative evaluation show that JoJoGAN produces high quality high resolution images that vastly outperform the current state-of-the-art.more » « less
-
Simulators are being increasingly used to train agents before deploying them in real-world environments. While training in simulation provides a cost-effective way to learn, poorly modeled aspects of the simulator can lead to costly mistakes, or blind spots. While humans can help guide an agent towards identifying these error regions, humans themselves have blind spots and noise in execution. We study how learning about blind spots of both can be used to manage hand-off decisions when humans and agents jointly act in the real-world in which neither of them are trained or evaluated fully. The formulation assumes that agent blind spots result from representational limitations in the simulation world, which leads the agent to ignore important features that are relevant for acting in the open world. Our approach for blind spot discovery combines experiences collected in simulation with limited human demonstrations. The first step applies imitation learning to demonstration data to identify important features that the human is using but that the agent is missing. The second step uses noisy labels extracted from action mismatches between the agent and the human across simulation and demonstration data to train blind spot models. We show through experiments on two domains that our approach is able to learn a succinct representation that accurately captures blind spot regions and avoids dangerous errors in the real world through transfer of control between the agent and the human.more » « less
-
Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gender, age, and baldness even in dealing with low-quality images. In this paper, we propose a novel multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this ed, we propose a cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network. to learn a unified quality-invariant feature representation in unconstrained environments. We conduct extensive experiments on various real-world FR benchmarks varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.more » « less
-
With the widespread adoption of the Next Generation Science Standards (NGSS), science teachers and online learning environments face the challenge of evaluating students' integration of different dimensions of science learning. Recent advances in representation learning in natural language processing have proven effective across many natural language processing tasks, but a rigorous evaluation of the relative merits of these methods for scoring complex constructed response formative assessments has not previously been carried out. We present a detailed empirical investigation of feature-based, recurrent neural network, and pre-trained transformer models on scoring content in real-world formative assessment data. We demonstrate that recent neural methods can rival or exceed the performance of feature-based methods. We also provide evidence that different classes of neural models take advantage of different learning cues, and pre-trained transformer models may be more robust to spurious, dataset-specific learning cues, better reflecting scoring rubrics.more » « less