skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 8, 2026

Title: Integrative taxonomy of introduced Haplosclerida and four new species from Hawaiʻi
Haplosclerid sponges (Porifera: Demospongiae: Heteroscleromorpha), and particularly the family Chalinidae, are notoriously difficult to identify through taxonomic methods alone. Here we use an integrative approach to confirm the identification and report both polymorphic characters and different morphotypes exhibited from a recruitment stage that complicate identification of introduced haplosclerid species Haliclona (Soestella) caerulea and Gelliodes conulosa sp. nov. in Hawaiʻi. Using these same methods, we also describe three new species Haliclona (Gellius) pahua sp. nov., Haliclona (Reniera) kahoe sp. nov., Haliclona (Rhizoniera) loe sp. nov. from our collections in Kāne‘ohe Bay. Using a combination of mitochondrial and ribosomal RNA sequences, we compile a phylogeny that is consistent with previous molecular work but is at odds with the morphological characters used to classify species belonging to Chalinidae and Niphatidae families within Haplosclerida. Although shared morphological traits were distributed across taxa throughout the tree, both mitochondrial and ribosomal RNA sequences were diagnostic, with an average of at least 3 % sequence divergence among species and their closest relative. This study highlights both the use of standardized Autonomous Reef Monitoring Structures (ARMS) to access the hidden diversity of haplosclerid sponges, and the potential for competition between these introduced and newly described and potentially endemic species.    more » « less
Award ID(s):
2048457
PAR ID:
10568326
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Zootaxa
Date Published:
Journal Name:
Zootaxa
Volume:
5566
Issue:
2
ISSN:
1175-5326
Page Range / eLocation ID:
243 to 272
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ‘tooth-tailed’ scorpions of the buthid genus Odontobuthus comprises six species with an allopatric or parapatric pattern of distribution in the Middle East, but the diversity of Odontobuthus in Iran appears to be underestimated, with the limits of several species remaining unclear. In the present contribution, an integrative approach to the systematics of Odontobuthus was applied, to determine the taxonomic validity and phylogenetic relationships among its species. Statistical analyses of five meristic characters, 38 morphometric characters and 21 morphometric ratios, combined with molecular phylogenetic analyses of DNA sequences from the mitochondrial cytochrome c oxidase subunit I (COI) gene, were conducted. All previously described species of Odontobuthus were found to be well supported, and new morphological diagnoses are here presented. Additionally, three new species: Odontobuthus baluchicus sp. nov. from the Makkoran Mountains, Odontobuthus chabaharensis sp. nov. from the coast of the Gulf of Oman (Sistan and Baluchistan Provinces) and Odontobuthus kermanus sp. nov. from Kerman Province, are described, raising the total number of Odontobuthus species to nine, six of which are endemic or subendemic to the Iranian Plateau. A distribution map and identification key to the species of Odontobuthus are also provided. 
    more » « less
  2. Abstract Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences (“barcodes”) of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes. 
    more » « less
  3. Abstract The genus Cyerce Bergh, 1870 has been a model for the study of defensive strategies, including chemical defences, ceratal autotomy, and crypsis or aposematism. Specialization on different algae and diverse genital armatures also make Cyerce a useful system for investigating speciation by host shift versus sexual selection. Here, we review the genus Cyerce in the Pacific and Indian oceans using molecular and morphological data. Two mitochondrial genes (COI and 16S) and one nuclear gene (H3) were sequenced from 154 specimens, including representatives from the Atlantic Ocean. Bayesian and maximum likelihood analyses were used to generate phylogenetic hypotheses. Species delimitation analyses performed on COI sequences recovered 17 genetically distinct Pacific and Indian Ocean species of Cyerce, 10 of which are new to science. Nine new species are named herein (C. takanoi sp. nov., C. katiae sp. nov., C. trowbridgeae sp. nov., C. blackburnae sp. nov., C. tutela sp. nov., C. basi sp. nov., C. whaapi sp. nov., C. goodheartae sp. nov., and C. liliuokalaniae sp. nov.). The 10th species, from the Red Sea, is not named due to the absence of internal anatomical data. These findings increase the species richness in Cyerce by about two-thirds, and demonstrate that even conspicuous taxa harbour considerable cryptic diversity. 
    more » « less
  4. California's network of marine protected areas was created to protect the diversity and abundance of native marine life, but the status of some taxa is very poorly known. Here we describe the sponges (phylum Porifera) from the Carmel Pinnacles State Marine Reserve, as assessed by a SCUBA-based survey in shallow waters. Of the 29 sponge species documented, 12 (41%) of them were previously unknown. Using a combination of underwater photography, DNA sequencing, and morphological taxonomy, we greatly improve our understanding of the status and distribution of previously described species and formally describe the new species as Hymedesmia promina sp. nov., Phorbas nebulosus sp. nov., Clathria unoriginalis sp. nov., Clathria rumsena sp. nov., Megaciella sanctuarium sp. nov., Mycale lobos sp. nov., Xestospongia ursa sp. nov., Haliclona melissae sp. nov., Halichondria loma sp. nov., Hymeniacidon fusiformis sp. nov., Scopalina carmela sp. nov., and Obruta collector gen. nov., sp. nov. An additional species, Lissodendoryx topsenti (de Laubenfels 1930), is moved to Hemimycale, and H. polyboletus comb. nov., nom. nov. is created due to preoccupation by H. topsenti (Burton, 1929). Several of the new species appear to be rare and/or have very restricted distributions, as they were not found at comparative survey sites outside of Carmel Bay. These results illustrate the potential of qualitative presence/absence systematic surveys of understudied taxa to discover and document substantial novel diversity.  
    more » « less
  5. Lobophorais a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep‐water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed thatLobophoraspecies diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo‐Pacific. This study used three molecular markers (cox3,rbcL,psbA), different single‐marker species delimitation methods (GMYC,ABGD,PTP), and morphological evidence to evaluateLobophoraspecies diversity in the Western Atlantic and the Eastern Pacific oceans.Cox3 provided the greatest number of primary species hypotheses(PSH), followed byrbcL and thenpsbA.GMYCspecies delimitation analysis was the most conservative across all three markers, followed byPTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinctLobophoraspecies were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described:L. adpressasp. nov.,L. cocoensissp. nov.,L. colombianasp. nov.,L. crispatasp. nov.,L. delicatasp. nov.,L. dispersasp. nov.,L. panamensissp. nov., andL. tortugensissp. nov. This study showed that the best approach to confidently identifyLobophoraspecies is to analyzeDNAsequences (preferablycox3 andrbcL) followed by comparative morphological and geographical assessment. 
    more » « less