skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting
abstract: The current work considers solutions to the wave equation on asymptotically flat, stationary, Lorentzian spacetimes in $(1+3)$ dimensions. We investigate the relationship between the rate at which the geometry tends to flat and the pointwise decay rate of solutions. The case where the spacetime tends toward flat at a rate of $$|x|^{-1}$$ was studied by Tataru (2013), where a $$t^{-3}$$ pointwise decay rate was established. Here we extend the result to geometries tending toward flat at a rate of $$|x|^{-\kappa}$$ and establish a pointwise decay rate of $$t^{-\kappa-2}$$ for $$\kappa\in\Bbb{N}$$ with $$\kappa\ge 2$$. We assume a weak local energy decay estimate holds, which restricts the geodesic trapping allowed on the underlying geometry. We use the resolvent to connect the time Fourier Transform of a solution to the Cauchy data. Ultimately the rate of pointwise wave decay depends on the low frequency behavior of the resolvent, which is sensitive to the rate at which the background geometry tends to flat.  more » « less
Award ID(s):
2002132
PAR ID:
10568456
Author(s) / Creator(s):
Publisher / Repository:
American Journal of Mathematics
Date Published:
Journal Name:
American Journal of Mathematics
Volume:
146
Issue:
1
ISSN:
1080-6377
Page Range / eLocation ID:
47 to 105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider, for h , E > 0, resolvent estimates for the semiclassical Schrödinger operator − h 2 Δ + V − E. Near infinity, the potential takes the form V = V L + V S , where V L is a long range potential which is Lipschitz with respect to the radial variable, while V S = O ( | x | − 1 ( log | x | ) − ρ ) for some ρ > 1. Near the origin, | V | may behave like | x | − β , provided 0 ⩽ β < 2 ( 3 − 1 ). We find that, for any ρ ˜ > 1, there are C , h 0 > 0 such that we have a resolvent bound of the form exp ( C h − 2 ( log ( h − 1 ) ) 1 + ρ ˜ ) for all h ∈ ( 0 , h 0 ]. The h-dependence of the bound improves if V S decays at a faster rate toward infinity. 
    more » « less
  2. We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $$n\geqslant 3$$ , $$\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$$ $=f(x)$ almost everywhere with respect to Lebesgue measure for all $$f\in H^{s}(\mathbb{R}^{n})$$ provided that $s>(n+1)/2(n+2)$ . The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya. 
    more » « less
  3. Abstract We describe wave decay rates associated to embedded resonances and spectral thresholds for waveguides and manifolds with infinite cylindrical ends. We show that if the cut-off resolvent is polynomially bounded at high energies, as is the case in certain favorable geometries, then there is an associated asymptotic expansion, up to a $$O(t^{-k_0})$$ remainder, of solutions of the wave equation on compact sets as $$t \to \infty $$. In the most general such case we have $$k_0=1$$, and under an additional assumption on the infinite ends we have $$k_0 = \infty $$. If we localize the solutions to the wave equation in frequency as well as in space, then our results hold for quite general waveguides and manifolds with infinite cylindrical ends. To treat problems with and without boundary in a unified way, we introduce a black box framework analogous to the Euclidean one of Sjöstrand and Zworski. We study the resolvent, generalized eigenfunctions, spectral measure, and spectral thresholds in this framework, providing a new approach to some mostly well-known results in the scattering theory of manifolds with cylindrical ends. 
    more » « less
  4. We prove an explicit weighted estimate for the semiclassical Schrödinger operatorP = - h^{2} \partial^{2}_{x} + V(x;h)onL^{2}(\R), withV(x;h)a finite signed measure, and whereh >0is the semiclassical parameter. The proof is a one-dimensional instance of the spherical energy method, which has been used to prove Carleman estimates in higher dimensions and in more complicated geometries. The novelty of our result is that the potential need not be absolutely continuous with respect to Lebesgue measure. Two consequences of the weighted estimate are the absence of positive eigenvalues forP, and a limiting absorption resolvent estimate with sharph-dependence. The resolvent estimate implies exponential time-decay of the local energy for solutions to the corresponding wave equation with a compactly supported measure potential, provided there are no negative eigenvalues and no zero resonance, and provided the initial data have compact support. 
    more » « less
  5. Abstract: We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $$\Bbb{R}^3$$. A solitary wave solution is given by $Q(x-t,y,z)$, where $$Q$$ is the ground state solution to $$-Q+\Delta Q+Q^2=0$$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $$Q$$ in the energy space, evolves to a solution that, as $$t\to\infty$$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $$x>\delta t-\tan\theta\sqrt{y^2+z^2}$$ for $$0\leq\theta\leq{\pi\over 3}-\delta$$. 
    more » « less