Abstract The broadband solar K-corona is linearly polarized due to Thomson scattering. Various strategies have been used to represent coronal polarization. Here, we present a new way to visualize the polarized corona, using observations from the 2023 April 20 total solar eclipse in Australia in support of the Citizen CATE 2024 project. We convert observations in the common four-polarizer orthogonal basis (0°, 45°, 90°, & 135°) to −60°, 0°, and +60° (MZP) polarization, which is homologous toR, G, Bcolor channels. The unique image generated provides some sense of how humans might visualize polarization if we could perceive it in the same way we perceive color.
more »
« less
Constraining Solar Emission Radius at 42 MHz During the 2024 Total Solar Eclipse Using a Student-commissioned Radio Telescope
Abstract Low-frequency solar radio emission is sourced in the solar corona, with sub-100 MHz radio emission largely originating from the ∼105K plasma around 2 optical radii. However, the region of emission has yet to be constrained at 35–45 MHz due to both instrumentation limitations and the rarity of astronomical events, such as total solar eclipses, which allow for direct observational approaches. In this work, we present the results from a student-led project to commission a low-frequency radio telescope array situated in the path of totality of the 2024 total solar eclipse in an effort to probe the middle corona. The Deployable Low-Band Ionosphere and Transient Experiment (DLITE) is a low-frequency radio array comprised of four dipole antennas, optimized to observe at 35–45 MHz, and capable of resolving the brightest radio sources in the sky. We constructed a DLITE station in Observatory Park, a dark-sky park in Montville, Ohio. Results of observations during the total solar eclipse demonstrate that DLITE stations can be quickly deployed for observations and provide constraints on the radius of solar emission at our center observing frequency of 42 MHz. In this work, we outline the construction of DLITE Ohio and the solar observation results from the total solar eclipse that transversed North America in 2024 April.
more »
« less
- Award ID(s):
- 2020265
- PAR ID:
- 10568596
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 979
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 203
- Size(s):
- Article No. 203
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This letter capitalizes on a unique set of total solar eclipse observations acquired between 2006 and 2020 in white light, Fexi789.2 nm (Tfexi= 1.2 ± 0.1 MK), and Fexiv530.3 nm (Tfexiv= 1.8 ± 0.1 MK) emission complemented by in situ Fe charge state and proton speed measurements from Advanced Composition Explorer/SWEPAM-SWICS to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquity of open structures invariably associated with Fexiemission from Fe10+and hence a constant electron temperature,Tc=Tfexi, in the expanding corona. The in situ Fe charge states are found to cluster around Fe10+, independently of the 300–700 km s−1stream speeds, referred to as the continual solar wind. Thus, Fe10+yields the fiducial link between the continual solar wind and itsTfexisources at the Sun. While the spatial distribution of Fexivemission from Fe13+associated with streamers changes throughout the solar cycle, the sporadic appearance of charge states >Fe11+in situ exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures ≥Tfexivwithin the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate, and fast solar wind characterized by the sameTfexiin the expanding corona places new constraints on the physical processes shaping the solar wind.more » « less
-
The Sun’s corona is its tenuous outer atmosphere of hot plasma, which is difficult to observe. Most models of the corona extrapolate its magnetic field from that measured on the photosphere (the Sun’s optical surface) over a full 27-day solar rotational period, providing a time-stationary approximation. We present a model of the corona that evolves continuously in time, by assimilating photospheric magnetic field observations as they become available. This approach reproduces dynamical features that do not appear in time-stationary models. We used the model to predict coronal structure during the total solar eclipse of 8 April 2024 near the maximum of the solar activity cycle. There is better agreement between the model predictions and eclipse observations in coronal regions located above recently assimilated photospheric data.more » « less
-
Abstract. Several publications have reported that total column ozone (TCO) may oscillate with an amplitude of up to 10 Dobson Units during a solar eclipse while other researchers have not seen evidence that an eclipse leads to variations in TCO beyond the typical natural variability. Here, we try to resolve these contradictions by measuring short-term (seconds to minutes) variations in TCO using “global” (Sun and sky) and direct-Sun observations in the ultraviolet (UV) range with filter radiometers (GUVis-3511 and Microtops). Measurements were performed during three solar eclipses: the Great American Eclipse of 2024, which was observed in Mazatlán, Mexico, on 8 April 2024; a partial solar eclipse taking place in the United States on 14 October 2023 and observed at Fort Collins, Colorado (40.57° N, 105.10° W); and a total solar eclipse occurring in Antarctica on 4 December 2021 and observed at Union Glacier (79.76° S, 82.84° W). The upper limit of the amplitude of oscillations in TCO observed at Mazatlán, Fort Collins, and Antarctica were 0.7 %, 0.3 %, and 0.03 %, respectively. The variability at all sites was within that observed during times not affected by an eclipse. The larger variability at Mazatlán is likely due to cirrus clouds occurring throughout the day of the eclipse and the difficulty of separating changes in the ozone layer from cloud effects. These results support the conclusion that a solar eclipse does not lead to variations in TCO of more than ± 2 Dobson Units and likely much less, drawing into question reports of much larger oscillations. In addition to calculating TCO, we also present changes in the spectral irradiance and aerosol optical depth during eclipses and compare radiation levels observed during totality. The new results augment our understanding of the effect of a solar eclipse on the Earth's upper atmosphere.more » « less
-
null (Ed.)This Letter capitalizes on a unique set of total solar eclipse observations, acquired between 2006 and 2020, in white light, \ion[Fe xi] 789.2 nm (\Tfexi\ = $$1.2 \pm 0.1$$ MK) and \ion[Fe xiv] 530.3 nm (\Tfexiv\ = $$ 1.8 \pm 0.1$$ MK) emission. They are complemented by \insitu\ Fe charge state and proton speed measurements from ACE/SWEPAM-SWICS, to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquitous presence of open structures throughout the corona, invariably associated with \ion[Fe xi] emission from $$\rm Fe^{10+}$$, thus revealing a constant electron temperature, \Tc\ = \Tfexi\, in the expanding corona. The \insitu\ Fe charge states are found to cluster around $$\rm Fe^{10+}$$, independently of the 300 to 700 km $$\rm s^{-1}$$ stream speeds, referred to as the continual solar wind. $$\rm Fe^{10+}$$ thus yields the fiducial link between the continual solar wind and its \Tfexi\ sources at the Sun. While the spatial distribution of \ion[Fe xiv] emission, from $$\rm Fe^{13+}$$, associated with streamers, changes throughout the solar cycle, the sporadic appearance of charge states $$> \rm Fe^{11+}$$, \insitu, exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures $$\ge \rm $$ \Tfexiv\ within the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate and fast solar wind, characterized by the same \Tfexi\ in the expanding corona, places new constraints on the physical processes shaping the solar wind.more » « less
An official website of the United States government
