skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 1, 2025

Title: Little evidence for homoeologous gene conversion and homoeologous exchange events in Gossypium allopolyploids
Abstract PremiseA complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non‐crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. MethodsHere, we use an expanded phylogenetic sampling of high‐quality genome assemblies from seven allopolyploidGossypiumspecies (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. ResultsWe found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best‐supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. ConclusionsOverall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon inGossypium, affecting between zero and 24 genes per subgenome (0.0–0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four‐taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.  more » « less
Award ID(s):
2145811 2209085
PAR ID:
10568647
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley Periodicals LLC on behalf of Botanical Society of America
Date Published:
Journal Name:
American Journal of Botany
Volume:
111
Issue:
8
ISSN:
0002-9122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bomblies, K (Ed.)
    The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention. 
    more » « less
  2. Summary Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo‐allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far‐reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops. 
    more » « less
  3. Abstract PremiseAllopolyploidy—a hybridization‐induced whole‐genome duplication event—has been a major driver of plant diversification. The extent to which chromosomes pair with their proper homolog vs. with their homoeolog in allopolyploids varies across taxa, and methods to detect homoeologous gene flow (HGF) are needed to understand how HGF has shaped polyploid lineages. MethodsThe ABBA‐BABA test represents a classic method for detecting introgression between closely related species, but here we developed a modified use of the ABBA‐BABA test to characterize the extent and direction of HGF in allotetraploidCoffea arabica. ResultsWe found that HGF is abundant in theC. arabicagenome, with both subgenomes serving as donors and recipients of variation. We also found that HGF is highly maternally biased in plastid‐targeted—but not mitochondrial‐targeted—genes, as would be expected if plastid–nuclear incompatibilities exist between the two parent species. DiscussionTogether, our analyses provide a simple framework for detecting HGF and new evidence consistent with selection favoring overwriting of paternally derived alleles by maternally derived alleles to ameliorate plastid–nuclear incompatibilities. Natural selection therefore appears to shape the direction and intensity of HGF in allopolyploid coffee, indicating that cytoplasmic inheritance has long‐term consequences for polyploid lineages. 
    more » « less
  4. Purugganan, Michael (Ed.)
    Abstract Whole-genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1–2 Million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two coresident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g., dN/dS, πN/πS) may be biased when species of different ploidy levels are compared. 
    more » « less
  5. Abstract Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution. 
    more » « less