skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Digitally Diagnosing Multiple Developmental Delays Using Crowdsourcing Fused With Machine Learning: Protocol for a Human-in-the-Loop Machine Learning Study
BackgroundA considerable number of minors in the United States are diagnosed with developmental or psychiatric conditions, potentially influenced by underdiagnosis factors such as cost, distance, and clinician availability. Despite the potential of digital phenotyping tools with machine learning (ML) approaches to expedite diagnoses and enhance diagnostic services for pediatric psychiatric conditions, existing methods face limitations because they use a limited set of social features for prediction tasks and focus on a single binary prediction, resulting in uncertain accuracies. ObjectiveThis study aims to propose the development of a gamified web system for data collection, followed by a fusion of novel crowdsourcing algorithms with ML behavioral feature extraction approaches to simultaneously predict diagnoses of autism spectrum disorder and attention-deficit/hyperactivity disorder in a precise and specific manner. MethodsThe proposed pipeline will consist of (1) gamified web applications to curate videos of social interactions adaptively based on the needs of the diagnostic system, (2) behavioral feature extraction techniques consisting of automated ML methods and novel crowdsourcing algorithms, and (3) the development of ML models that classify several conditions simultaneously and that adaptively request additional information based on uncertainties about the data. ResultsA preliminary version of the web interface has been implemented, and a prior feature selection method has highlighted a core set of behavioral features that can be targeted through the proposed gamified approach. ConclusionsThe prospect for high reward stems from the possibility of creating the first artificial intelligence–powered tool that can identify complex social behaviors well enough to distinguish conditions with nuanced differentiators such as autism spectrum disorder and attention-deficit/hyperactivity disorder. International Registered Report Identifier (IRRID)PRR1-10.2196/52205  more » « less
Award ID(s):
2014232
PAR ID:
10568760
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
JMIR
Date Published:
Journal Name:
JMIR Research Protocols
Volume:
13
ISSN:
1929-0748
Page Range / eLocation ID:
e52205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundReliable and specific biomarkers that can distinguish autism spectrum disorders (ASDs) from commonly co-occurring attention-deficit/hyperactivity disorder (ADHD) are lacking, causing misses and delays in diagnosis, and reducing access to interventions and quality of life. AimsTo examine whether an innovative, brief (1-min), videogame method called Computerised Assessment of Motor Imitation (CAMI), can identify ASD-specific imitation differences compared with neurotypical children and children with ADHD. MethodThis cross-sectional study used CAMI alongside standardised parent-report (Social Responsiveness Scale, Second Edition) and observational measures of autism (Autism Diagnostic Observation Schedule-Second Edition; ADOS-2), ADHD (Conners) and motor ability (Physical and Neurological Examination for Soft Signs). The sample comprised 183 children aged 7–13 years, with ADHD (without ASD), with ASD (with and without ADHD) and who were neurotypical. ResultsRegardless of co-occurring ADHD, children with ASD showed poorer CAMI performance than neurotypical children (P< 0.0001; adjustedR2= 0.28), whereas children with ADHD and neurotypical children showed similar CAMI performance. Receiver operating curve and support vector machine analyses showed that CAMI distinguishes ASD from both neurotypical children (80% true positive rate) and children with ADHD (70% true positive rate), with a high success rate significantly above chance. Among children with ASD, poor CAMI performance was associated with increased autism traits, particularly ADOS-2 measures of social affect and restricted and repetitive behaviours (adjustedR2= 0.23), but not with ADHD traits or motor ability. ConclusionsFour levels of analyses confirm that poor imitation measured by the low-cost and scalable CAMI method specifically distinguishes ASD not only from neurotypical development, but also from commonly co-occurring ADHD. 
    more » « less
  2. IntroductionEarly and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis. MethodsThis study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet). ResultsDespite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality. DiscussionOur research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context. 
    more » « less
  3. Neurodiversity refers to variations in the human brain that affect information processing; it includes conditions, or “neurotypes,” such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), dyslexia, dyscalculia, and dyspraxia, among others. Neurodiversity can be conceptualized as significant differences in the ways that individuals process information; such differences may concern written or verbal language, sensory information, body language, or social interactions. These differences have been historically viewed within the medical model of disability, for example, as deficits in ability through a diagnosed condition, often associated with a goal of curing or managing the condition. 
    more » « less
  4. Abstract Autism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder with a heterogeneous nature, influenced by genetics and exhibiting diverse clinical presentations. In this study, we dissect Autism Spectrum Disorder (ASD) into its behavioral components, mirroring the diagnostic process used in clinical settings. Morphological features are extracted from magnetic resonance imaging (MRI) scans, found in the publicly available dataset ABIDE II, identifying the most discriminative features that differentiate ASD within various behavioral domains. Then, each subject is categorized as having severe, moderate, or mild ASD, or typical neurodevelopment (TD), based on the behavioral domains of the Social Responsiveness Scale (SRS). Through this study, multiple artificial intelligence (AI) models are utilized for feature selection and classifying each ASD severity and behavioural group. A multivariate feature selection algorithm, investigating four different classifiers with linear and non-linear hypotheses, is applied iteratively while shuffling the training-validation subjects to find the set of cortical regions with statistically significant association with ASD. A set of six classifiers are optimized and trained on the selected set of features using 5-fold cross-validation for the purpose of severity classification for each behavioural group. Our AI-based model achieved an average accuracy of 96%, computed as the mean accuracy across the top-performing AI models for feature selection and severity classification across the different behavioral groups. The proposed AI model has the ability to accurately differentiate between the functionalities of specific brain regions, such as the left and right caudal middle frontal regions. We propose an AI-based model that dissects ASD into behavioral components. For each behavioral component, the AI-based model is capable of identifying the brain regions which are associated with ASD as well as utilizing those regions for diagnosis. The proposed system can increase the speed and accuracy of the diagnostic process and result in improved outcomes for individuals with ASD, highlighting the potential of AI in this area. 
    more » « less
  5. null (Ed.)
    Here we summarize recent progress in machine learning model for diagnosis of Autism Spectrum Disorder (ASD) and Attention-deficit/Hyperactivity Disorder (ADHD). We outline and describe the machine-learning, especially deep-learning, techniques that are suitable for addressing research questions in this domain, pitfalls of the available methods, as well as future directions for the field. We envision a future where the diagnosis of ASD, ADHD, and other mental disorders is accomplished, and quantified using imaging techniques, such as MRI, and machine-learning models. 
    more » « less