skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase
The “Histidine-brace” (His-brace) copper-binding site, composed of Cu(His)2with a backbone amine, is found in metalloproteins with diverse functions. A primary example is lytic polysaccharide monooxygenase (LPMO), a class of enzymes that catalyze the oxidative depolymerization of polysaccharides, providing not only an energy source for native microorganisms but also a route to more effective industrial biomass conversion. Despite its importance, how the Cu His-brace site performs this unique and challenging oxidative depolymerization reaction remains to be understood. To answer this question, we have designed a biosynthetic model of LPMO by incorporating the Cu His-brace motif into azurin, an electron transfer protein. Spectroscopic studies, including ultraviolet-visible (UV–Vis) absorption and electron paramagnetic resonance, confirm copper binding at the designed His-brace site. Moreover, the designed protein is catalytically active towards both cellulose and starch, the native substrates of LPMO, generating degraded oligosaccharides with multiturnovers by C1 oxidation. It also performs oxidative cleavage of the model substrate 4-nitrophenyl-D-glucopyranoside, achieving a turnover number ~9% of that of a native LPMO assayed under identical conditions. This work presents a rationally designed artificial metalloenzyme that acts as a structural and functional mimic of LPMO, which provides a promising system for understanding the role of the Cu His-brace site in LPMO activity and potential application in polysaccharide degradation.  more » « less
Award ID(s):
2201279
PAR ID:
10568825
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
43
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electron paramagnetic resonance (EPR) based distance measurements have been exploited to measure protein–protein docking, protein–DNA interactions, substrate binding and metal coordination sites. Here, we use EPR to locate a native paramagnetic metal binding site in a protein with less than 2 Å resolution. We employ a rigid Cu 2+ binding motif, the double histidine (dHis) motif, in conjunction with double electron electron resonance (DEER) spectroscopy. Specifically, we utilize a multilateration approach to elucidate the native Cu 2+ binding site in the immunoglobulin binding domain of protein G. Notably, multilateration performed with the dHis motif required only the minimum number of four distance constraints, whereas comparable studies using flexible nitroxide-based spin labels require many more for similar precision. This methodology demonstrates a significant increase in the efficiency of structural determinations via EPR distance measurements using the dHis motif. 
    more » « less
  2. The primary and secondary coordination spheres of metal binding sites in metalloproteins have been investigated extensively, leading to the creation of high-performing functional metalloproteins; however, the impact of the overall structure of the protein scaffold on the unique properties of metalloproteins has rarely been studied. A primary example is the binuclear CuA center, an electron transfer cupredoxin domain of photosynthetic and respiratory complexes and, recently, a protein co-regulated with particulate methane and ammonia monooxygenases. The redox potential, Cu–Cu spectroscopic features, and a valence delocalized state of CuA are difficult to reproduce in synthetic models, and every artificial protein CuA center to-date has used a modified cupredoxin. Here we present a fully functional CuA center designed in a structurally non-homologous protein, cytochrome c peroxidase (CcP), by only two mutations (CuACcP). We demonstrate with UV-visible absorption, resonance Raman, and MCD spectroscopy that CuACcP is valence delocalized. CW and pulsed (HYSCORE) X-band EPR show it has a highly compact gz area and small Az hyperfine principal value with g and A tensors that resemble axially perturbed CuA. Stopped-flow kinetics found that CuA formation proceeds through a single T2Cu intermediate. The reduction potential of CuACcP is comparable to native CuA and can transfer electrons to a physiological redox partner. We built a structural model of the designed Cu binding site from EXAFS and validated it by mutation of coordinating Cys and His residues, revealing that a triad of residues (R48C, W51C, and His52) rigidly arranged on one α-helix is responsible for chelating the first Cu atom and that His175 stabilizes the binuclear complex by rearrangement of the CcP heme-coordinating helix. This design is a demonstration that a highly conserved protein fold is not uniquely necessary to induce certain characteristic physical and chemical properties to a metal redox center. 
    more » « less
  3. Abstract The analog methanobactin (amb) peptide with the sequence ac‐His1‐Cys2‐Gly3‐Pro4‐Tyr5‐His6‐Cys7(amb5A) will bind the metal ions of zinc, nickel, and copper. To further understand how amb5Abinds these metals, we have undertaken a series of studies of structurally related heptapeptides where one or two of the potential His or Cys binding sites have been replaced by Gly, or the C‐terminus has been blocked by amidation. The studies were designed to compare how these metals bind to these sequences in different pH solutions of pH 4.2 to 10 and utilized native electrospray ionization (ESI) with ion mobility‐mass spectrometry (IM‐MS) which allows for the quantitative analysis of the charged species produced during the reactions. The native ESI conditions were chosen to conserve as much of the solution‐phase behavior of the amb peptides as possible and an analysis of how the IM‐MS results compare with the expected solution‐phase behavior is discussed. The oligopeptides studied here have applications for tag‐based protein purification methods, as therapeutics for diseases caused by elevated metal ion levels or as inhibitors for metal‐protein enzymes such as matrix metalloproteinases. 
    more » « less
  4. Abstract The Sco protein fromThermus thermophilushas previously been shown to perform a disulfide bond reduction in the CuAprotein fromT. thermophilus, which is a soluble protein engineered from subunit II of cytochromeba3oxidase that lacks the transmembrane helix. The native cysteines onTtSco andTtCuAwere mutated to serine residues to probe the reactivities of the individual cysteines. Conjugation of TNB to the remaining cysteine inTtCuAand subsequent release upon incubation with the complementaryTtSco protein demonstrated the formation of the mixed disulfide intermediate. The cysteine ofTtSco that attacks the disulfide bond in the targetTtCuAprotein was determined to beTtSco Cysteine 49. This cysteine is likely more reactive than Cysteine 53 due to a higher degree of solvent exposure. Removal of the metal binding histidine, His 139, does not change MDI formation. However, altering the arginine adjacent to the reactive cysteine in Sco (Arginine 48) does alter the formation of the MDI. Binding of Cu2+or Cu+toTtSco prior to reaction withTtCuAwas found to preclude formation of the mixed disulfide intermediate. These results shed light on a mechanism of disulfide bond reduction by theTtSco protein and may point to a possible role of metal binding in regulating the activity. ImportanceThe function of Sco is at the center of many studies. The disulfide bond reduction in CuAby Sco is investigated herein and the effect of metal ions on the ability to reduce and form a mixed disulfide intermediate are also probed. 
    more » « less
  5. Abstract Pulsed dipolar EPR spectroscopy (PDS) in combination with site‐directed spin labeling is a powerful tool in structural biology. However, the commonly used spin labels are conjugated to biomolecules via rather long and flexible linkers, which hampers the translation of distance distributions into biomolecular conformations. In contrast, the spin label copper(II)‐nitrilotriacetic acid [Cu2+(NTA)] bound to two histidines (dHis) is rigid and yields narrow distance distributions, which can be more easily translated into biomolecular conformations. Here, we use this label on the 71 kDaYersiniaouter protein O (YopO) to decipher whether a previously experimentally observed bimodal distance distribution is due to two conformations of the biomolecule or of the flexible spin labels. Two different PDS experiments, that is, pulsed electron–electron double resonance (PELDOR aka DEER) and relaxation‐induced dipolar modulation enhancement (RIDME), yield unimodal distance distribution with the dHis‐Cu2+(NTA) motif; this result suggests that the α‐helical backbone of YopO adopts a single conformation in frozen solution. In addition, we show that the Cu2+(NTA) label preferentially binds to the target double histidine (dHis) sites even in the presence of 22 competing native histidine residues. Our results therefore suggest that the generation of a His‐null background is not required for this spin labeling methodology. Together these results highlight the value of the dHis‐Cu2+(NTA) motif in PDS experiments. 
    more » « less