Abstract Fused deposition modeling (FMD) is considered one of the most common additive manufacturing methods for creating prototypes and small functional parts. Many researchers have studied Polylactic acid (PLA), Polycarbonate (PC), and Acrylonitrile butadiene styrene (ABS) as a material for fused deposition modeling printing. Among them, Polylactic Acid (PLA) is considered one of the most popular thermoplastic materials due to its low cost and biodegradable properties. In this study, silk PLA material was used. In Fused deposition modeling (FMD), the selection of printing parameters plays a pivotal role in determining the overall quality and integrity of the 3D-printed products. These parameters significantly influence the quality and strength of 3-D printed products. This study investigates the mechanical properties of silk-PLA printed specimens under different printing conditions, such as layer thickness, nozzle temperature, and print speed. All the tensile specimens were tested using ASTM D638 to characterize Young’s modulus and ultimate tensile strength. The thickness of the layers of tensile specimens was set to 0.1 mm, 0.15 mm, and 0.2 mm. The temperatures of the nozzle used during printing varied from 200°C, 210°C, and 220°C, whereas print speeds of 100 mm/s, 120 mm/s, and 140 mm/s were considered. The other printing parameters were kept consistent for all specimens. The result indicates tensile strength generally increases with increasing temperature of the nozzle, up to 220°C; however, a decline was observed in the average Young’s modulus value when the thickness of the layer increased from 0.10 mm to 0.20 mm. According to the results of the ANOVA analysis, the interaction between layer thickness, nozzle temperature, and printing speed significantly affects the tensile strength and Young’s modulus of Silk-PLA. This study reveals that nozzle temperature is the most critical parameter regarding the ultimate tensile strength and Young’s modulus, providing crucial insights for optimizing 3D printing parameters. 
                        more » 
                        « less   
                    
                            
                            On the optimization of fatigue limit in additively manufactured fiber reinforced polymer composites
                        
                    
    
            Abstract This study uses the Taguchi optimization methodology to optimize the fatigue performance of short carbon fiber-reinforced polyamide samples printed via fused deposition modeling (FDM). The optimal printing properties that maximize the fatigue limit were determined to be 0.075 mm layer thickness, 0.4 mm infill line distance, 50 mm/s printing speed, and 55 °C chamber temperature with layer thickness being the most critical parameter. To qualify fatigue endurance limit, the energy dissipation in uniaxial fatigue was quantified by using hysteresis energy and temperature rise at steady state. From these results, the fatigue limit for a specimen printed with optimized printing parameters was predicted to be 69 and 70 MPa from hysteresis energy and temperature rise at steady state methods, consecutively, and it was experimentally determined to be 67 MPa. This work demonstrates the effectiveness of the Taguchi optimization method when applied to additive manufacturing and the swift ability to predict the fatigue limit of a material with only one specimen to produce optimal additively manufactured components for industrial applications, as validated by experimental fatigue testing. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10568881
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Progress in Additive Manufacturing
- Volume:
- 10
- Issue:
- 9
- ISSN:
- 2363-9512
- Format(s):
- Medium: X Size: p. 6131-6150
- Size(s):
- p. 6131-6150
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            As a promising lightweight multifunctional material, carbon fiber structural battery composites have great potentials to enable longer service life and operating distance for the rapidly increasing mobile electric technologies. While simultaneously carrying mechanical loads and storing electrical energy, the developed multifunctional composites can achieve “massless” energy storage and further extend to sensing and energy harvesting for self-powered structural health monitoring. However, it is still very challenging to predict the state-of-health of structural battery composites due to a lack of understanding of underlying coupled mechanical-electrochemical phenomena during operation. In this study, we first use a novel 3D printing method to fabricate and tailor microstructure of the multifunctional carbon fiber composites. With an optimal electrode layer thickness of 0.4 mm, the stable specific capacity at 1C reaches over 80% of the theoretical capacity of the electrode active materials (lithium iron phosphate) with an average energy density of 152 Wh/kg observed. The corresponding flexural modulus and flexural strength are 8.7 GPa and 69.6 MPa, respectively. The state-of-health of 3D printed structural battery composites under electrochemical cycling and external mechanical loadings are also investigated. The mechanical performance is not affected by the electrochemical charge-discharge processes. The structural battery composites under three-point bending testing show good capacity retention with rapid degradation of electrochemical performance observed near fracture point. The findings from this study not only provide insights for monitoring the state-of-health of structural battery but also show mechanical-electrochemical coupling as a potential way of self-powered structural health monitoring through the 3D printed multifunctional composites.more » « less
- 
            Abstract Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.more » « less
- 
            Abstract Four different experimental approaches for rapid estimation of fatigue limit (endurance limit) based on energy dissipation during cyclic loading are discussed. The presented approaches use energy dissipation and thermography and can reliably evaluate the fatigue limit of material by conducting the fatigue test on a single specimen. Results show that the released energy due to damage accumulation at the stress levels above the fatigue limit changes the trend of energy dissipation and that this trend can be used to predict the fatigue limit. Experimental results on CS 1018 and SS 304 specimens are presented to illustrate the utility of the proposed methods.more » « less
- 
            Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nano-liter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
