Abstract Understanding the motivation to adopt personal household adaptation behaviors in the face of climate change-related hazards is essential for developing and implementing behaviorally realistic interventions that promote well-being and health. Escalating extreme weather events increase the number of those directly exposed and adversely impacted by climate change. But do people attribute these negative events to climate change? Such subjective attribution may be a cognitive process whereby the experience of negative climate-change-related events may increase risk perceptions and motivate people to act. Here we surveyed a representative sample of 1846 residents of Florida and Texas, many of whom had been repeatedly exposed to hurricanes on the Gulf Coast, facing the 2020 Atlantic hurricane season. We assessed prior hurricane negative personal experiences, climate-change-related subjective attribution (for hurricanes), risk appraisal (perceived probability and severity of a hurricane threat), hurricane adaptation appraisal (perceived efficacy of adaptation measures and self-efficacy to address the threat of hurricanes), and self-reported hurricane personal household adaptation. Our findings suggest that prior hurricane negative personal experiences and subjective attribution are associated with greater hurricane risk appraisal. Hurricane subjective attribution moderated the relationship between hurricane negative personal experiences and risk appraisal; in turn, negative hurricane personal experiences, hurricane risk appraisal, and adaptation appraisal were positively associated with self-reported hurricane personal adaptation behaviors. Subjective attribution may be associated with elevated perceived risk for specific climate hazards. Communications that help people understand the link between their negative personal experiences (e.g. hurricanes) and climate change may help guide risk perceptions and motivate protective actions, particularly in areas with repeated exposure to threats.
more »
« less
Improving analogues-based detection & attribution approaches for hurricanes
Abstract This paper presents a proof of concept for a new analogue-based framework for the detection and attribution of hurricane-related hazards. This framework addresses two important limitations of existing analogue-based methodologies: the lack of observed similar events, and the unsuitability of the distance metrics for hurricanes. To do so, we use a track-based metric, and we make use of synthetic tracks catalogues. We show that our method allows for selecting a sufficient number of suitable analogues, and we apply it to nine hurricane cases. Our analysis does not reveal any robust changes in wind hazards, translation speed, seasonality, or frequency over recent decades, consistent with current literature. This framework provides a reliable alternative to traditional analogue-based methods in the case of hurricanes, complementing and potentially enhancing efforts in addressing extreme weather event attribution.
more »
« less
- PAR ID:
- 10568975
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 20
- Issue:
- 2
- ISSN:
- 1748-9326
- Format(s):
- Medium: X Size: Article No. 024042
- Size(s):
- Article No. 024042
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The eastern North Carolina Coastal Area Management Act region is one of the most hurricane-prone areas of the United States. Hurricanes incur substantial damage and economic losses because structures located near the coast tend to be high value as well as particularly exposed. To bolster disaster mitigation and community resilience, it is crucial to understand how hurricane hazards drive social and economic impacts. We integrate detailed hazard simulations, property data, and labor compensation estimates to comprehensively analyze hurricanes’ economic impacts. This study investigates the spatial distribution of probabilistic hurricane hazards, and concomitant property losses and labor impacts, pinpointing particularly hard hit areas. Relationships between capital and labor losses, social vulnerability, and asset values reveal the latter as the primary determinant of overall economic consequences.more » « less
-
Abstract Climate change is expected to increase the frequency and intensity of natural hazards such as hurricanes. With a severe shortage of affordable housing in the United States, renters may be uniquely vulnerable to disaster‐related housing disruptions due to increased hazard exposure, physical vulnerability of structures, and socioeconomic disadvantage. In this work, we construct a panel dataset consisting of housing, socioeconomic, and hurricane disaster data from counties in 19 states across the East and Gulf Coasts of the United States from 2009 to 2018 to investigate how the frequency and intensity of a hurricane correspond to changes in median rent and housing affordability (the interaction between rent prices and income) over time. Using a two‐stage least square random‐effects regression model, we find that more intense prior‐year hurricanes correspond to increases in median rents via declines in housing availability. The relationship between hurricanes and rent affordability is more complex, though the occurrence of a hurricane in a given year or the previous year reduces affordable rental housing, especially for counties with higher percentages of renters and people of color. Our results highlight the multiple challenges that renters are likely to face following a hurricane, and we emphasize that disaster recovery in short‐ and medium‐term should focus on providing safe, stable, and affordable rental housing assistance.more » « less
-
Abstract Nine in ten major outages in the US have been caused by hurricanes. Long-term outage risk is a function of climate change-triggered shifts in hurricane frequency and intensity; yet projections of both remain highly uncertain. However, outage risk models do not account for the epistemic uncertainties in physics-based hurricane projections under climate change, largely due to the extreme computational complexity. Instead they use simple probabilistic assumptions to model such uncertainties. Here, we propose a transparent and efficient framework to, for the first time, bridge the physics-based hurricane projections and intricate outage risk models. We find that uncertainty in projections of the frequency of weaker storms explains over 95% of the uncertainty in outage projections; thus, reducing this uncertainty will greatly improve outage risk management. We also show that the expected annual fraction of affected customers exhibits large variances, warranting the adoption of robust resilience investment strategies and climate-informed regulatory frameworks.more » « less
-
Research on hurricane impacts in Florida’s coastal regions has been extensive, yet there remains a gap in comparing the effects and potential damage of different hurricanes within the same geographical area. Additionally, there is a need for reliable discussions on how variations in storm surges during these events influence evacuation accessibility to hurricane shelters. This is especially significant for rural areas with a vast number of aging populations, whose evacuation may require extra attention due to their special needs (i.e., access and functional needs). Therefore, this study aims to address this gap by conducting a comparative assessment of storm surge impacts on the evacuation accessibility of southwest Florida communities (e.g., Lee and Collier Counties) affected by two significant hurricanes: Irma in 2017 and Ian in 2022. Utilizing the floating catchment area method and examining Replica’s OD Matrix data with Geographical Information Systems (GISs)-based technical tools, this research seeks to provide insights into the effectiveness of evacuation plans and identify areas that need enhancements for special needs sheltering. By highlighting the differential impacts of storm surges on evacuation accessibility between these two hurricanes, this assessment contributes to refining disaster risk reduction strategies and has the potential to inform decision-making processes for mitigating the impacts of future coastal hazards.more » « less
An official website of the United States government
