skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calcium dynamics tune developmental tempo to generate evolutionarily divergent axon tract lengths
ABSTRACT The considerably slow pace of human brain development correlates with an evolutionary increase in brain size, cell numbers, and expansion of neuronal structures, with axon tracts undergoing an even greater evolutionary increase than other neuronal domains. However, whether tempo is responsible for these differences in magnitude, and how, remains to be determined. Here, we used brain organoids to investigate this and observed that human axon tracts spend more time growing and extend farther compared to those of mice, independent of their tissue environment. Single cell RNA sequencing analysis pointed to a subset of calcium-permeable ion channels expressed throughout neuron development, including during axon tract outgrowth. Calcium imaging during early neuron development consistently revealed a reduced calcium influx in human neurons compared to mouse neurons. Stimulating calcium influx and increasing cAMP levels resulted in premature halting of axon tract outgrowth and shorter axon tracts, mimicking the mouse phenotype, while abrogating calcium influx led to an even longer phase of axon tract outgrowth and longer axon tracts in humans. Thus, evolutionary differences in calcium regulation set the tempo of neuronal development, by extending the time window to foster the more elaborated human neuron morphology.  more » « less
Award ID(s):
2134955
PAR ID:
10569021
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Kayed, Rakez (Ed.)
    Background: In Alzheimer’s disease (AD) brain, neuronal polarity and synaptic connectivity are compromised. A key structure for regulating polarity and functions of neurons is the axon initial segment (AIS), which segregates somatodendritic from axonal proteins and initiates action potentials. Toxic tau species, including extracellular oligomers (xcTauOs), spread tau pathology from neuron to neuron by a prion-like process, but few other cell biological effects of xcTauOs have been described. Objective: Test the hypothesis that AIS structure is sensitive to xcTauOs. Methods: Cultured wild type (WT) and tau knockout (KO) mouse cortical neurons were exposed to xcTauOs, and quantitative western blotting and immunofluorescence microscopy with anti-TRIM46 monitored effects on the AIS. The same methods were used to compare TRIM46 and two other resident AIS proteins in human hippocampal tissue obtained from AD and age-matched non-AD donors. Results: Without affecting total TRIM46 levels, xcTauOs reduce the concentration of TRIM46 within the AIS and cause AIS shortening in cultured WT, but not TKO neurons. Lentiviral-driven tau expression in tau KO neurons rescues AIS length sensitivity to xcTauOs. In human AD hippocampus, the overall protein levels of multiple resident AIS proteins are unchanged compared to non-AD brain, but TRIM46 concentration within the AIS and AIS length are reduced in neurons containing neurofibrillary tangles. Conclusion: xcTauOs cause partial AIS damage in cultured neurons by a mechanism dependent on intracellular tau, thereby raising the possibility that the observed AIS reduction in AD neurons in vivo is caused by xcTauOs working in concert with endogenous neuronal tau. 
    more » « less
  2. Abstract Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states. 
    more » « less
  3. Abstract Small-conductance calcium-activated potassium (SK) channels show a ubiquitous distribution on neurons, in both somatodendritic and axonal regions. SK channels are associated with neuronal activity regulating action potential frequency, dendritic excitability, and synaptic plasticity. Although the physiology of SK channels and the mechanisms that control their surface expression levels have been investigated extensively, little is known about what controls SK channel diffusion in the neuronal plasma membrane. This aspect is important, as the diffusion of SK channels at the surface may control their localization and proximity to calcium channels, hence increasing the likelihood of SK channel activation by calcium. In this study, we successfully investigated the diffusion of SK channels labeled with quantum dots on human embryonic kidney cells and dissociated hippocampal neurons by combining a single-particle tracking method with total internal reflection fluorescence microscopy. We observed that actin filaments interfere with SK mobility, decreasing their diffusion coefficient. We also found that during neuronal maturation, SK channel diffusion was gradually inhibited in somatodendritic compartments. Importantly, we observed that axon barriers formed at approximately days in vitro 6 and restricted the diffusion of SK channels on the axon initial segment (AIS). However, after neuron maturation, SK channels on the AIS were strongly immobilized, even after disruption of the actin network, suggesting that crowding may cause this effect. Altogether, our work provides insight into how SK channels diffuse on the neuronal plasma membrane and how actin and membrane crowding impacts SK channel diffusion. 
    more » « less
  4. The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase inAppgene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown ofAppblock the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe(a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS.In vivoasin vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD. SIGNIFICANCE STATEMENTWhile the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity.In vivoandin vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia. 
    more » « less
  5. Abstract We present a new computational framework of neuron growth based on the phase field method and develop an open-source software package called “NeuronGrowth_IGAcollocation”. Neurons consist of a cell body, dendrites, and axons. Axons and dendrites are long processes extending from the cell body and enabling information transfer to and from other neurons. There is high variation in neuron morphology based on their location and function, thus increasing the complexity in mathematical modeling of neuron growth. In this paper, we propose a novel phase field model with isogeometric collocation to simulate different stages of neuron growth by considering the effect of tubulin. The stages modeled include lamellipodia formation, initial neurite outgrowth, axon differentiation, and dendrite formation considering the effect of intracellular transport of tubulin on neurite outgrowth. Through comparison with experimental observations, we can demonstrate qualitatively and quantitatively similar reproduction of neuron morphologies at different stages of growth and allow extension towards the formation of neurite networks. 
    more » « less