skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Navigating the New Arctic: Insights into Ship Activities, Ice Modeling, and Stakeholder Engagement in the U.S. Arctic Waters
In this paper, we focus on investigating ship activities in the United States’ Arctic waters and developing new viscoelastic materials that can mimic specific ice behavior. This is a significant challenge, and we discuss potential positive outcomes and how the acquired knowledge can contribute to understanding ice behavior in Arctic and Sub-Arctic regions. We first define ice and ship statistics, providing a foundational understanding of potential ice-ship interactions. We then describe the development of thought experiments for wave-ice interactions and the creation of a numerical environment for modeling purposes. This step is crucial for simulating various scenarios related to ice and wave dynamics, ultimately contributing to the design of ships capable of navigating safely in diverse Arctic conditions. Finally, stakeholder and community engagement is addressed, recognizing the importance of involving local perspectives and insights to ensure practical, socially responsible, and effective solutions.  more » « less
Award ID(s):
2127095
PAR ID:
10569108
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Zufelt, John; Yang, Zhaohui
Publisher / Repository:
ASCE (American Society of Civil Engineers)
Date Published:
Format(s):
Medium: X
Location:
Anchorage, Alaska
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarised with the aim of determining the spatial distribution and variability in ice nuclei in oceanic regions.The presented data from literature and previously unpublished data from over 23 months of ship-based measurements stretch from the Arctic to the Southern Ocean and include a circumnavigation of Antarctica. In comparison to continental observations, ship-based measurements of ambient ice nuclei show 1 to 2 orders of magnitude lower mean concentrations. To quantify the geographical variability in oceanic areas, the concentration range of potential ice nuclei in different climate zones is analysed by meridionally dividing the expedition tracks into tropical, temperate and polar climate zones. We find that concentrations of ice nuclei in these meridional zones follow temperature spectra with similar slopes but vary in absolute concentration. Typically, the frequency with which specific concentrations of ice nuclei are observed at a certain temperature follows a log-normal distribution. A consequence of the log-normal distribution is that the mean concentration is higher than the most frequently measured concentration. Finally, the potential contribution of ship exhaust to the measured ice nuclei concentration on board research vessels is analysed as function of temperature. We find a sharp onset of the influence at approximately −36 ∘C but none at warmer temperatures that could bias ship-based measurements. 
    more » « less
  2. Abstract We construct a linear model of microseism power as a function of sea‐ice concentration and ocean‐wave activity with a seismic station located on northern Ellesmere Island. The influence of wind‐ice‐ocean interactions on microseism has been taken into account. We find the increase in microseism power over the last 32 years reflects the long‐term loss of sea ice and increasing ocean‐wave activity in the Arctic Ocean likely associated with climate change. We further assess model performance to determine a representative region over which sea‐ice concentration and ocean‐wave activity most directly influence the microseism power. The seismological methods developed here suggest that there is the potential to augment or refine observations of sea‐ice conditions obtained from satellites and fromin‐situobservations. Seismological methods may thus help determine properties such as sea‐ice thickness, which are less amenable to conventional observations, under a changing climate, particularly in remote areas like the High Arctic. 
    more » « less
  3. Our understanding of Arctic sea ice and its wide-ranging influence is deeply rooted in observation. Advancing technologies have profoundly improved our ability to observe Arctic sea ice, document its processes and properties, and describe atmosphere-ice-ocean interactions with unprecedented detail. Yet, our progress toward better understanding the Arctic sea ice system is mired by the stark disparities between observations that tend to be siloed by method, scientific discipline, and application. This article presents a review and philosophical design for observing sea ice and accelerating our understanding of the Arctic sea ice system. We give a brief history of Arctic sea ice observations and showcase the 2018 melt season within the context of five observational themes: spatial heterogeneity, temporal variability, cross-disciplinary science, scalability, and retrieval uncertainty. We synthesize buoy data, optical imagery, satellite retrievals, and airborne measurements to demonstrate how disparate data sets can be woven together to transcend issues of observational scale. The results show that there are limitations to interpreting any single data set alone. However, many of these limitations can be surmounted by combining observations that cross spatial and temporal scales. We conclude the article with pathways toward enhanced coordination across observational platforms in order to: (1) optimize the scientific, operational, and community return on observational investments, and (2) facilitate a richer understanding of Arctic sea ice and its role in the climate system. 
    more » « less
  4. Abstract Recent climate change has caused declines in ice coverage which have lengthened the open water season in the Arctic and increased access to resources and shipping routes. These changes have resulted in more vessel activity in seasonally ice-covered regions. While traffic is increasing in the ice-free season, the amount of vessel activity in the marginal ice zone (ice concentration 15–80%) or in pack ice (>80% concentration) remains unclear. Understanding patterns of vessel activities in ice is important given increased safety challenges and environmental impacts. Here, we couple high-resolution ship tracking information with sea ice thickness and concentration data to quantify vessel activity in ice-covered areas of the Pacific Arctic (northern Bering, Chukchi, and western Beaufort Seas). This region is a geo-strategically critical area that contains globally important commercial fisheries and serves as a corridor for Arctic access for wildlife and vessels. We find that vessel traffic in the marginal ice zone is widely distributed across the study area while vessel traffic in pack ice is concentrated along known shipping routes and in areas of natural resource development. Of the statistically significant relationships between vessel traffic and both sea ice concentration and thickness, over 99% are negative, indicating that increasing sea ice is associated with decreasing vessel traffic on a monthly time scale. Furthermore, there is substantial vessel traffic in areas of high concentration for bowhead whales (Balaena mysticetus), and traffic in these areas increased four-fold during the study period. Fishing vessels dominate vessel traffic at low ice concentrations, but vessels categorized as Other, likely icebreakers, are the most common vessel type in pack ice. These findings indicate that vessel traffic in areas of ice coverage is influenced by distant policy and resource development decisions which should be taken into consideration when trying to predict future vessel-ice interactions in a changing climate. 
    more » « less
  5. Abstract. In recent decades, Arctic sea ice has shifted toward ayounger, thinner, seasonal ice regime. Studying and understanding this“new” Arctic will be the focus of a year-long ship campaign beginning inautumn 2019. Lagrangian tracking of sea ice floes in the Community EarthSystem Model Large Ensemble (CESM-LE) during representative “perennial”and “seasonal” time periods allows for understanding of the conditionsthat a floe could experience throughout the calendar year. These modeltracks, put into context a single year of observations, provide guidance onhow observations can optimally shape model development, and how climatemodels could be used in future campaign planning. The modeled floe tracksshow a range of possible trajectories, though a Transpolar Drift trajectoryis most likely. There is also a small but emerging possibility of high-risktracks, including possible melt of the floe before the end of a calendaryear. We find that a Lagrangian approach is essential in order to correctlycompare the seasonal cycle of sea ice conditions between point-basedobservations and a model. Because of high variability in the melt season seaice conditions, we recommend in situ sampling over a large range of ice conditionsfor a more complete understanding of how ice type and surface conditionsaffect the observed processes. We find that sea ice predictability emergesrapidly during the autumn freeze-up and anticipate that process-basedobservations during this period may help elucidate the processes leading tothis change in predictability. 
    more » « less