skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamical Constraint on Precipitation Biases Over the Indo‐Pacific Region During Boreal Summer in AMIP6 Models
Abstract Climate models suffer from longstanding precipitation biases, much of which has been attributed to their atmospheric component owing to unrealistic parameterizations. Here we investigate precipitation biases in 37 Atmospheric Model Intercomparison Project Phase 6 (AMIP6) models, focusing on the Indo‐Pacific region during boreal summer. These models remain plagued by considerable precipitation biases, especially over regions of strong precipitation. In particular, 22 models overestimate the Asian‐Pacific monsoon precipitation, while 28 models underestimate the southern Indian Ocean Intertropical Convergence Zone precipitation. The inter‐model spread in summer precipitation is decomposed into Empirical Orthogonal Functions (EOFs). The leading EOF mode features an anomalous anticyclone circulation spanning the Indo‐northwest Pacific oceans, which we show is energized by barotropic conversion from the confluence of the background monsoonal westerlies and trade‐wind easterlies. Our results suggest precipitation biases in atmospheric models, though caused by unrealistic parameterizations, are organized by dynamical feedbacks of the mean flow.  more » « less
Award ID(s):
2311170
PAR ID:
10569115
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Overly smooth topography in general circulation models (GCMs) underestimates the blocking effect of the steep mountain ranges flanking the eastern Pacific. We explore the impact of this bias on common biases in Pacific climate simulation [i.e., the unrealistic cross-equatorial symmetry of near-surface winds, sea surface temperatures (SSTs), and precipitation] through sensitivity experiments with modified Central and/or South American topography in an atmosphere–ocean coupled GCM. Quantifying orographic blocking potential via the Froude number, we determine that an envelope topographic interpolation scheme best captures observed blocking patterns. Implementing envelope topography only in Central America reduced model biases as greater blocking of the trade winds warmed SST and enhanced convergence in the northeastern Pacific. Doing so additionally over the Andes improved the simulation of South Pacific circulation and the South Pacific convergence zone as stronger deflection of the westerlies intensified the South Pacific anticyclone. This mitigated convection biases in the southeast Pacific by increasing subsidence and cooling SST. However, remote impacts of the Andes exacerbated the dry bias in the northeast tropical Pacific, resulting in negligible improvement in the East Pacific double-ITCZ. We find that, due to the significant role of large-scale convergence in driving precipitation patterns, other model biases, such as cloud-radiative biases, may modulate the impact of altering topography. Our results highlight the importance of considering alternate methods for calculating model topographic boundary conditions, though the optimal interpolation scheme will vary with model resolution and the impact of topography on GCM biases can be sensitive to choices made in formulating parameterizations. Significance StatementIn this study, we explore how the mountain ranges spanning Central and South America shape the climate of the Pacific by blocking large-scale midlatitude and tropical winds. We show that the height of these mountains is typically too low in climate models and that elevating them can improve patterns of rainfall, surface ocean temperatures, and near-surface winds in the Pacific. This is important because model biases in the Pacific climate limit their utility for understanding current and future climate variability. Improving the representation of blocking by mountains can thus be a simple method for reducing uncertainties in future climate projections. 
    more » « less
  2. Abstract The intertropical convergence zone (ITCZ) is associated with a zonal band of strong precipitation that migrates meridionally over the seasonal cycle. Tropical precipitation also migrates zonally, such as from the South Asian monsoon in Northern Hemisphere summer (JJA) to the precipitation maximum of the west Pacific in Northern Hemisphere winter (DJF). To explore this zonal movement in the Indo-Pacific sector, we analyze the seasonal cycle of tropical precipitation using a 2D energetic framework and study idealized atmosphere–ocean simulations with and without ocean dynamics. In the observed seasonal cycle, an atmospheric energy and precipitation anomaly forms over South Asia in northern spring and summer due to heating over land. It is then advected eastward into the west Pacific in northern autumn and remains there due to interactions with the Pacific cold tongue and equatorial easterlies. We interpret this phenomenon as a “monsoonal mode,” a zonally propagating moist energy anomaly of continental and seasonal scale. To understand the behavior of the monsoonal mode, we develop and explore an analytical model in which the monsoonal mode is advected by low-level winds, is sustained by interaction with the ocean, and decays due to the free tropospheric mixing of energy. Significance StatementRegional concentrations of tropical precipitation, such as the South Asian monsoon, provide water to billions of people. These features have strong seasonal cycles that have typically been framed in terms of meridional shifts of precipitation following the sun’s movement. Here, we study zonal shifts of tropical precipitation over the seasonal cycle in observations and idealized simulations. We find that land–ocean contrasts trigger a monsoon with concentrated precipitation over Asia in northern summer and near-surface eastward winds carry this precipitation into the west Pacific during northern autumn in what we call a “monsoonal mode.” This concentrated precipitation remains over the west Pacific during northern winter, as further migration is impeded by the cold sea surface temperatures (SSTs) and easterly winds of the east Pacific. 
    more » « less
  3. Abstract Deep convection in the Indo-Pacific warm pool is vital in driving global atmospheric overturning circulations. Year-to-year variations in the strength and location of warm pool precipitation can lead to significant local and downstream hydroclimatic impacts, including floods and droughts. While the El Niño-Southern Oscillation (ENSO) is recognized as a key factor in modulating interannual precipitation variations in this region, atmospheric internal variability is often as important. Here, through targeted atmospheric model experiments, we identify an intrinsic low-frequency atmospheric mode in the warm pool region during the austral summer, and show that its impact on seasonal rainfall is comparable to ENSO. This mode resembles the horizontal structure of the Madden-Julian Oscillation (MJO), and may play a role in initiating ENSO as stochastic forcing. We show that this mode is not merely an episodic manifestation of MJO events but primarily arises from barotropic energy conversion aided by positive feedback between convection and circulation. 
    more » « less
  4. Abstract A critical issue is determining the factors that control the year-to-year variability in precipitation over southern Asia. In this study, we employ a cyclostationary linear inverse model (CS-LIM) to quantify the relative contribution of tropical Pacific and Indian Ocean sea surface temperature anomalies (SSTAs) to the interannual variability of the Asian monsoon, especially Indian summer monsoon rainfall (ISMR). Through a series of CS-LIM experiments, we isolate the impacts of the direct forcing from Pacific SSTAs, Indian Ocean SSTAs, and their interaction on Asian monsoon rainfall variability. Our results reveal distinct patterns of influence with the direct forcing from the Pacific (Indian) Ocean tending to enhance (reduce) the magnitude of precipitation variability, while the Indo-Pacific interaction acts to strongly damp the variability of Asian monsoon precipitation, especially over India. We further investigate these specific impacts on ISMR by analyzing the relationship between tropical Indo-Pacific SSTAs and the leading three empirical orthogonal functions (EOFs) of ISMR. The results from our CS-LIM experiments indicate that the direct forcing from El Niño–Southern Oscillation (ENSO) enhances the variability of the first and third EOFs, while the Indian Ocean SSTA opposes ENSO’s effects, which is consistent with previous studies. Our new results show that the tropical Indo-Pacific interaction strongly damps ISMR variability, which is due to the ENSO-induced Indian Ocean dipole (IOD) opposing the direct impacts from ENSO on ISMR. Additionally, reduced ENSO amplitude and duration associated with the Indo-Pacific interaction may also contribute to the damping effect on ISMR, but this requires further study to understand the relevant mechanisms. 
    more » « less
  5. Abstract The models that participated in the Coupled Model Intercomparison Project (CMIP) exhibit large biases in Arctic sea ice climatology that seem related to biases in seasonal atmospheric and oceanic circulations. Using historical runs of 34 CMIP6 models from 1979 to 2014, we investigate the links between the climatological sea ice concentration (SIC) biases in September and atmospheric and oceanic model climatologies. The main intermodel spread of September SIC is well described by two leading EOFs, which together explain ∼65% of its variance. The first EOF represents an underestimation or overestimation of SIC in the whole Arctic, while the second EOF describes opposite SIC biases in the Atlantic and Pacific sectors. Regression analysis indicates that the two SIC modes are closely related to departures from the multimodel mean of Arctic surface heat fluxes during summer, primarily shortwave and longwave radiation, with incoming Atlantic Water playing a role in the Atlantic sector. Local and global links with summer cloud cover, low-level humidity, upper or lower troposphere temperature/circulation, and oceanic variables are also found. As illustrated for three climate models, the local relationships with the SIC biases are mostly similar in the Arctic across the models but show varying degrees of Atlantic inflow influence. On a global scale, a strong influence of the summer atmospheric circulation on September SIC is suggested for one of the three models, while the atmospheric influence is primarily via thermodynamics in the other two. Clear links to the North Atlantic oceanic circulation are seen in one of the models. 
    more » « less