Progressive query processing enables data scientists to efficiently analyze and explore large datasets. Data scientists can start further analyses earlier if the progressive result can represent the complete results well. Most progressive processing frameworks carefully control which parts of the input to process in order to improve the quality of progressive results. The input control strategies work well when the data are processed uniformly. However, the progressive results will be biased towards the join keys if the processed data are not uniform. A recently proposed input&output framework named QPJ corrects the bias by temporarily hiding some results. The framework dynamically estimates the distribution of the complete result and outputs progressive results with a similar distribution to the estimated complete result. This demo presents QPJVis, which is a progressive query processing system designed to inherently process the progressive queries using the QPJ frame- work. Additionally, we also implement an input control framework, Prism, in QPJVis so that users can compare the difference between the input&output framework and a purely input framework. 
                        more » 
                        « less   
                    
                            
                            QPJVis Demo: Quality-Boost Progressive Join Query Processing System
                        
                    
    
            Progressive query processing enables data scientists to efficiently analyze and explore large datasets. Data scientists can start further analyses earlier if the progressive result can represent the complete results well. Most progressive processing frameworks carefully control which parts of the input to process in order to improve the quality of progressive results. The input control strategies work well when the data are processed uniformly. However, the progressive results will be biased towards the join keys if the processed data are not uniform. A recently proposed input&output framework named QPJ corrects the bias by temporarily hiding some results. The framework dynamically estimates the distribution of the complete result and outputs progressive results with a similar distribution to the estimated complete result. This demo presents QPJVis, which is a progressive query processing system designed to inherently process the progressive queries using the QPJ framework. Additionally, we also implement an input control framework, Prism, in QPJVis so that users can compare the difference between the input&output framework and a purely input framework. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1838222
- PAR ID:
- 10569119
- Publisher / Repository:
- VLDB
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 17
- Issue:
- 12
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 4345 to 4348
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With the requirements to enable data analytics and exploration interactively and efficiently, progressive data processing, especially progressive join, became essential to data science. Join queries are particularly challenging due to the correlation between input datasets which causes the results to be biased towards some join keys. Existing methods carefully control which parts of the input to process in order to improve the quality of progressive results. If the quality is not satisfactory, they will process more data to improve the result. In this paper, we propose an alternative approach that initially seems counter-intuitive but surprisingly works very well. After query processing, we intentionally report fewer results to the user with the goal of improving the quality. The key idea is that if the output is deviated from the correct distribution, we temporarily hide some results to correct the bias. As we process more data, the hidden results are inserted back until the full dataset is processed. The main challenge is that we do not know the correct output distribution while the progressive query is running. In this work, we formally define the progressive join problem with quality and progressive result rate constraints. We propose an input&output quality-aware progressive join framework (QPJ) that (1) provides input control that decides which parts of the input to process; (2) estimates the final result distribution progressively; (3) automatically controls the quality of the progressive output rate; and (4) combines input&output control to enable quality control of the progressive results. We compare QPJ with existing methods and show QPJ can provide the progressive output that can represent the final answer better than existing methods.more » « less
- 
            With the requirements to enable data analytics and exploration interactively and efficiently, progressive data processing, especially progressive join, became essential to data science. Join queries are particularly challenging due to the correlation between input datasets which causes the results to be biased towards some join keys. Existing methods carefully control which parts of the input to process in order to improve the quality of progressive results. If the quality is not satisfactory, they will process more data to improve the result. In this paper, we propose an alternative approach that initially seems counter-intuitive but surprisingly works very well. After query processing, we intentionally report fewer results to the user with the goal of improving the quality. The key idea is that if the output is deviated from the correct distribution, we temporarily hide some results to correct the bias. As we process more data, the hidden results are inserted back until the full dataset is processed. The main challenge is that we do not know the correct output distribution while the progressive query is running. In this work, we formally define the progressive join problem with quality and progressive result rate constraints. We propose an input&output quality-aware progressive join framework (QPJ) that (1) provides input control that decides which parts of the input to process; (2) estimates the final result distribution progressively; (3) automat- ically controls the quality of the progressive output rate; and (4) combines input&output control to enable quality control of the progressive results. We compare QPJ with existing methods and show QPJ can provide the progressive output that can represent the final answer better than existing methods.more » « less
- 
            Progressive visual analytics enable data scientists to efficiently explore large datasets and examine progressive results with low latency. Most progressive visualization frameworks use a progressive query processing module that controls the quality of the results and then feeds these results into a visualization module. The goal is to avoid poor-quality progressive results which could mislead data scientists. This method misses some optimization opportunities as it improves the quality of the intermediate result while ignoring how this result affects the final visualization. This work presents a work-in-progress quality-aware progressive visualization input control component, named QPV. The key idea of the proposed framework is to integrate the visualization module into the progressive query results so that the quality control takes into account the final visualization. With limited computational resources, QPV solves an optimization problem to allocate resources and alleviate the misleading effects in the progressive plots.more » « less
- 
            Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications in web search, recommendation systems, approximate query processing, etc. It computes a small, compact summary that preserves vital properties of the original data. In this paper, we study the data summarization problem of conjunctive query results, i.e., computing a k-size subset of a conjunctive query output, for any given k>0, that optimizes a certain objective. More specifically, we are interested in two commonly studied objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and its closest tuple in the summary (k-center clustering); and diversity, which measures the pairwise distances between the summary items. A simple approach that computes the entire query output and then applies existing algorithms on top of these materialized tuples suffers from high computational complexity because the query output can be large, e.g., for a relational database of N tuples, the number of result tuples can be NO(1).We propose O(1)-approximation algorithms that compute well-representative summaries of size k in time O(N*kO(1)), or even O(N+ kO(1)) in some cases, without computing all result tuples. We also propose the first efficient (2+\eps)-approximation algorithm for the k-center clustering problem over relational data. Our main idea is to formulate a few oracles that enable us to access specific query result tuples with certain properties, to show how these oracles can be implemented efficiently, and to compute desired summaries with few invocations of these oracles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    