Long-term snowpack decline is among the best-understood impacts of climate change on water resources systems. This trend has been observed for decades and is projected to continue even in climate projections in which total runoff volumes do not change significantly. For basins in which snowpack has historically provided intra-annual water storage, snowpack decline creates several issues that may require adaptation to infrastructure, operations, or both. This study develops an approach to analyze vulnerabilities and adaptations specifically focused on the challenge of snowpack decline, using the northern California reservoir system as a case study. We first introduce an open-source daily time-step simulation model of this system, which is validated against historical observations of operations. Multiobjective vulnerabilities to snowpack decline are then examined using a set of downscaled climate scenarios to capture the physically based effects of rising temperatures. A statistical analysis shows that the primary impacts include water supply shortage and lower reservoir storage resulting from the seasonal shift in runoff timing. These challenges identified from the vulnerability assessment inform proposed adaptations to operations to maintain multiobjective performance across the ensemble of plausible future scenarios, which include other uncertain hydrologic changes. To adapt seasonal reservoir management without the cost of additional infrastructure, we specifically propose and test adaptations that parameterize the structure of existing operating policies: a dynamic flood control rule curve and revised snowpack-to-streamflow forecasting methods to improve seasonal runoff predictability given declining snowpack. These adaptations are shown to mitigate the majority of vulnerabilities caused by snowpack decline across the scenario ensemble, with remaining opportunities for improvement using formal policy search and dynamic adaptation techniques. The coupled approach to vulnerability assessment and adaptation is generalizable to other snowmelt-dominated water resources systems facing the loss of seasonal storage due to rising temperatures.
more »
« less
Assessing the effectiveness of reservoir operation and identifying reallocation opportunities under climate change
Abstract Reservoirs are designed and operated to mitigate hydroclimatic variability and extremes to fulfill various beneficial purposes. Existing reservoir infrastructure capacity and operation policies derived from historical records are challenged by hydrologic regime change and storage reduction from sedimentation. Furthermore, climate change could amplify the water footprint of reservoir operation (i.e. non-beneficial evaporative loss), further influencing the complex interactions among hydrologic variability, reservoir characteristics, and operation decisions. Disentangling and quantifying these impacts is essential to assess the effectiveness of reservoir operation under future climate and identify the opportunities for adaptive reservoir management (e.g. storage reallocation). Using reservoirs in Texas as a testing case, this study develops data-driven models to represent the current reservoir operation policies and assesses the challenges and opportunities in flood control and water supply under dynamically downscaled climate projections from the Coupled Model Intercomparison Project Phase 6. We find that current policies are robust in reducing future flood risks by eliminating small floods, reducing peak magnitude, and extending the duration for large floods. Current operation strategies can effectively reduce the risk of storage shortage for many reservoirs investigated, but reservoir evaporation and sedimentation pose urgent needs for revisions in the current guidelines to enhance system resilience. We also identify the opportunities for reservoir storage reallocation through seasonal-varying conservation pool levels to improve water supply reliability with negligible flood risk increase. This study provides a framework for stakeholders to evaluate the effectiveness of the current reservoir operation policy under future climate through the interactions among hydroclimatology, reservoir infrastructure, and operation policy.
more »
« less
- Award ID(s):
- 2239621
- PAR ID:
- 10569158
- Publisher / Repository:
- Environmental Research Letters
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 7
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 074010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The sensitivity of forecast-informed reservoir operating policies to forecast attributes (lead-time and skill) in many-objective water systems has been well-established. However, the viability of forecast-informed operations as a climate change adaptation strategy remains underexplored, especially in many-objective systems with complex trade-offs across interests. Little is known about the relationships between forecast attribute and policy robustness under deep uncertainty in future conditions and the relationships between forecast-informed performance and future hydrologic state. This study explores the sensitivity of forecast-informed policy robustness to forecast lead-time and skill in the outflow management plan of the Lake Ontario basin. We create water supply forecasts at four different subseasonal-to-annual lead-times and two levels of skill and further employ a many-objective evolutionary algorithm to discover policies tailored for each forecast case, historical supply conditions, and six objectives. We also leverage a partnership with decision-makers to identify a subset of candidate policies, which are reevaluated under a large set of plausible hydrologic conditions that reflect stationary and nonstationary climates. Scenario discovery techniques are used to map attributes of future hydrology to forecast-informed policy performance. Results show policy robustness is directly related to forecast lead-time, where policies conditioned on 12-month forecasts were more robust under future hydrology. Policies tailored for noisier long-lead forecasts were more robust under a wide range of plausible futures compared with policies trained to perfect forecasts, which highlights the potential to overfit control policies to historical information, even for a forecast-informed policy with perfect foresight. The relationship between performance and the hydrologic regime is dependent on the complexity of the interactions between control decisions and objectives. A threshold of objective performance as a function of supply conditions can support adaptive management of the system. However, more complex interactions make it difficult to identify simple hydrologic indicators that can serve as triggers for dynamic management.more » « less
-
Abstract Policy search methods provide a heuristic mapping between observations and decisions and have been widely used in reservoir control studies. However, recent studies have observed a tendency for policy search methods to overfit to the hydrologic data used in training, particularly the sequence of flood and drought events. This technical note develops an extension of bootstrap aggregation (bagging) and cross‐validation techniques, inspired by the machine learning literature, to improve reservoir control policy performance on out‐of‐sample hydrological sequences. We explore these methods using a case study of Folsom Reservoir, California, using control policies structured as binary trees, and streamflow resampling based on the paleo‐inflow record. Results show that calibration‐validation strategies for policy selection coupled with certain ensemble aggregation methods can improve out‐of‐sample performance in water supply and flood risk objectives over baseline performance given fixed computational costs. Our findings highlight the potential to improve policy search methodologies by leveraging these well‐established model training strategies from machine learning.more » « less
-
Abstract The middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte–Caballo Reservoir system (southern New Mexico). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 global climate models, coupled to a surface hydrologic model. Results suggest that the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021–70) will decrease relative to the past 50 years (1971–2020). The modeling also projects an increase in multiyear drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs than will changes in local evaporation and precipitation from the reservoir surfaces.more » « less
-
Floods are among the most destructive natural hazards, with damages expected to intensify under climate change and socio-economic pressures. Effective reservoir operation remains a critical yet challenging strategy for mitigating downstream impacts, as operators must navigate nonlinear system dynamics, uncertain inflow forecasts, and trade-offs between competing objectives. This study proposes a novel end-to-end data-driven framework that integrates process-based hydraulic simulations, a Transformer-based surrogate model for flood damage prediction, and reinforcement learning (RL) for reservoir gate operation optimization. The framework is demonstrated using the Coralville Reservoir (Iowa, USA) and two major historical flood events (2008 and 2013). Hydraulic and impact simulations with HEC-RAS and HEC-FIA were used to generate training data, enabling the development of a Transformer model that accurately predicts time-varying flood damages. This surrogate is coupled with a Transformer-enhanced Deep Q-Network (DQN) to derive adaptive gate operation strategies. Results show that the RL-derived optimal policy reduces both peak and time-integrated damages compared to expert and zero-opening benchmarks, while maintaining smooth and feasible operations. Comparative analysis with a genetic algorithm (GA) highlights the robustness of the RL framework, particularly its ability to generalize across uncertain inflows and varying initial storage conditions. Importantly, the adaptive RL policy trained on perturbed synthetic inflows transferred effectively to the hydrologically distinct 2013 event, and fine-tuning achieved near-identical performance to the event-specific optimal policy. These findings highlight the capability of the proposed framework to provide adaptive, transferable, and computationally efficient tools for flood-resilient reservoir operation.more » « less
An official website of the United States government

