skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Subseasonal-to-Annual Water Supply Forecasts on Many-Objective Water System Robustness under Long-Term Change
The sensitivity of forecast-informed reservoir operating policies to forecast attributes (lead-time and skill) in many-objective water systems has been well-established. However, the viability of forecast-informed operations as a climate change adaptation strategy remains underexplored, especially in many-objective systems with complex trade-offs across interests. Little is known about the relationships between forecast attribute and policy robustness under deep uncertainty in future conditions and the relationships between forecast-informed performance and future hydrologic state. This study explores the sensitivity of forecast-informed policy robustness to forecast lead-time and skill in the outflow management plan of the Lake Ontario basin. We create water supply forecasts at four different subseasonal-to-annual lead-times and two levels of skill and further employ a many-objective evolutionary algorithm to discover policies tailored for each forecast case, historical supply conditions, and six objectives. We also leverage a partnership with decision-makers to identify a subset of candidate policies, which are reevaluated under a large set of plausible hydrologic conditions that reflect stationary and nonstationary climates. Scenario discovery techniques are used to map attributes of future hydrology to forecast-informed policy performance. Results show policy robustness is directly related to forecast lead-time, where policies conditioned on 12-month forecasts were more robust under future hydrology. Policies tailored for noisier long-lead forecasts were more robust under a wide range of plausible futures compared with policies trained to perfect forecasts, which highlights the potential to overfit control policies to historical information, even for a forecast-informed policy with perfect foresight. The relationship between performance and the hydrologic regime is dependent on the complexity of the interactions between control decisions and objectives. A threshold of objective performance as a function of supply conditions can support adaptive management of the system. However, more complex interactions make it difficult to identify simple hydrologic indicators that can serve as triggers for dynamic management.  more » « less
Award ID(s):
2144332
PAR ID:
10533031
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
Journal Name:
Journal of Water Resources Planning and Management
Volume:
150
Issue:
5
ISSN:
0733-9496
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Forecast informed reservoir operations (FIRO) is an important advance in water management, but the design and testing of FIRO policies is limited by relatively short (10–35 year) hydro‐meteorological hindcasts. We present a novel, multisite model for synthetic forecast ensembles to overcome this limitation. This model utilizes parametric and non‐parametric procedures to capture complex forecast errors and maintain correlation between variables, lead times, locations, and ensemble members. After being fit to data from the hindcast period, this model can generate synthetic forecast ensembles in any period with observations. We demonstrate the approach in a case study of the FIRO‐based Ensemble Forecast Operations (EFO) control policy for the Lake Mendocino—Russian River basin, which conditions release decisions on ensemble forecasts from the Hydrologic Ensemble Forecast System (HEFS). We explore two generation strategies: (a) simulation of synthetic forecasts of meteorology to force HEFS; and (b) simulation of synthetic HEFS streamflow forecasts directly. We evaluate the synthetic forecasts using ensemble verification techniques and event‐based validation, finding good agreement with the actual ensemble forecasts. We then evaluate EFO policy performance using synthetic and actual forecasts over the hindcast period (1985–2010) and synthetic forecasts only over the pre‐hindcast period (1948–1984). Results show that the synthetic forecasts highlight important failure modes of the EFO policy under plausible forecast ensembles, but improvements are still needed to fully capture FIRO policy behavior under the actual forecast ensembles. Overall, the methodology advances a novel way to test FIRO policy robustness, which is key to building institutional support for FIRO. 
    more » « less
  2. Abstract Synthetic ensemble forecasts are an important tool for testing the robustness of forecast‐informed reservoir operations (FIRO). These forecasts are statistically generated to mimic the skill of hindcasts derived from operational ensemble forecasting systems, but they can be created for time periods when hindcast data are unavailable, allowing for a more comprehensive evaluation of FIRO policies. Nevertheless, it remains unclear how to determine whether a candidate synthetic ensemble forecasting approach is sufficiently representative of its real‐world counterpart to support FIRO policy evaluation. This highlights a need for formalfit‐for‐purposevalidation frameworks to advance synthetic forecasting as a generalizable risk analysis strategy. We address this research gap by first introducing a novel operations‐based validation framework, where reservoir storage and release simulations under a FIRO policy are compared when forced with a single ensemble hindcast and many different synthetic ensembles. We evaluate the suitability of synthetic forecasts based on formal probabilistic verification of the operational outcomes. Second, we develop a new synthetic ensemble forecasting algorithm and compare it to a previous algorithm using this validation framework across a set of stylized, hydrologically diverse reservoir systems in California. Results reveal clear differences in operational suitability, with the new method consistently outperforming the previous one. These findings demonstrate the promise of the newer synthetic forecasting approach as a generalizable tool for FIRO policy evaluation and robustness testing. They also underscore the value of the proposed validation framework in benchmarking and guiding future improvements in synthetic forecast development. 
    more » « less
  3. Abstract Uncertainty attribution in water supply forecasting is crucial to improve forecast skill and increase confidence in seasonal water management planning. We develop a framework to quantify fractional forecast uncertainty and partition it between (1) snowpack quantification methods, (2) variability in post‐forecast precipitation, and (3) runoff model errors. We demonstrate the uncertainty framework with statistical runoff models in the upper Tuolumne and Merced River basins (California, USA) using snow observations at two endmember spatial resolutions: a simple snow pillow index and full‐catchment snow water equivalent (SWE) maps at 50 m resolution from the Airborne Snow Observatories. Bayesian forecast simulations demonstrate a nonlinear decrease in the skill of statistical water supply forecasts during warm snow droughts, when a low fraction of winter precipitation remains as SWE. Forecast skill similarly decreases during dry snow droughts, when winter precipitation is low. During a shift away from snow‐dominance, the uncertainty of forecasts using snow pillow data increases about 1.9 times faster than analogous forecasts using full‐catchment SWE maps in the study area. Replacing the snow pillow index with full‐catchment SWE data reduces statistical forecast uncertainty by 39% on average across all tested climate conditions. Attributing water supply forecast uncertainty to reducible error sources reveals opportunities to improve forecast reliability in a warmer future climate. 
    more » « less
  4. null (Ed.)
    The use of hydro-meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro-meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast-informed decision-making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto-correlated, and non-Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium-range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space-time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis. 
    more » « less
  5. Abstract Snowpack provides the majority of predictive information for water supply forecasts (WSFs) in snow-dominated basins across the western United States. Drought conditions typically accompany decreased snowpack and lowered runoff efficiency, negatively impacting WSFs. Here, we investigate the relationship between snow water equivalent (SWE) and April–July streamflow volume (AMJJ-V) during drought in small headwater catchments, using observations from 31 USGS streamflow gauges and 54 SNOTEL stations. A linear regression approach is used to evaluate forecast skill under different historical climatologies used for model fitting, as well as with different forecast dates. Experiments are constructed in which extreme hydrological drought years are withheld from model training, that is, years with AMJJ-V below the 15th percentile. Subsets of the remaining years are used for model fitting to understand how the climatology of different training subsets impacts forecasts of extreme drought years. We generally report overprediction in drought years. However, training the forecast model on drier years, that is, below-median years (P15,P57.5], minimizes residuals by an average of 10% in drought year forecasts, relative to a baseline case, with the highest median skill obtained in mid- to late April for colder regions. We report similar findings using a modified National Resources Conservation Service (NRCS) procedure in nine large Upper Colorado River basin (UCRB) basins, highlighting the importance of the snowpack–streamflow relationship in streamflow predictability. We propose an “adaptive sampling” approach of dynamically selecting training years based on antecedent SWE conditions, showing error reductions of up to 20% in historical drought years relative to the period of record. These alternate training protocols provide opportunities for addressing the challenges of future drought risk to water supply planning. Significance StatementSeasonal water supply forecasts based on the relationship between peak snowpack and water supply exhibit unique errors in drought years due to low snow and streamflow variability, presenting a major challenge for water supply prediction. Here, we assess the reliability of snow-based streamflow predictability in drought years using a fixed forecast date or fixed model training period. We critically evaluate different training protocols that evaluate predictive performance and identify sources of error during historical drought years. We also propose and test an “adaptive sampling” application that dynamically selects training years based on antecedent SWE conditions providing to overcome persistent errors and provide new insights and strategies for snow-guided forecasts. 
    more » « less