skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE)
Abstract Convective clouds play an important role in the Earth’s climate system and are a known source of extreme weather. Gaps in our understanding of convective vertical motions, microphysics, and precipitation across a full range of aerosol and meteorological regimes continue to limit our ability to predict the occurrence and intensity of these cloud systems. Towards improving predictability, the National Science Foundation (NSF) sponsored a large field experiment entitled “Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE).” ESCAPE took place between 30 May - 30 Sept. 2022 in the vicinity of Houston, TX because this area frequently experiences isolated deep convection that interacts with the region's mesoscale circulations and its range of aerosol conditions. ESCAPE focused on collecting observations of isolated deep convection through innovative sampling, and on developing novel analysis techniques. This included the deployment of two research aircraft, the National Research Council of Canada Convair-580 and the Stratton Park Engineering Company Learjet, which combined conducted 24 research flights from 30 May to 17 June. On the ground, three mobile X-band radars, and one mobile Doppler lidar truck equipped with soundings, were deployed from 30 May to 28 June. From 1 August to 30 Sept. 2022, a dual-polarization C-band radar was deployed and operated using a novel, multi-sensor agile adaptive sampling strategy to track the entire lifecycle of isolated convective clouds. Analysis of the ESCAPE observations has already yielded preliminary findings on how aerosols and environmental conditions impact the convective life cycle.  more » « less
Award ID(s):
2326943 2019932 2019649 2019965 2019968
PAR ID:
10569169
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Bulletin of the American Meteorological Society
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A multi-agency succession of field campaigns was conducted in southeastern Texas during July 2021 through October 2022 to study the complex interactions of aerosols, clouds and air pollution in the coastal urban environment. As part of the Tracking Aerosol Convection interactions Experiment (TRACER), the TRACER- Air Quality (TAQ) campaign the Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) and the Convective Cloud Urban Boundary Layer Experiment (CUBE), a combination of ground-based supersites and mobile laboratories, shipborne measurements and aircraft-based instrumentation were deployed. These diverse platforms collected high-resolution data to characterize the aerosol microphysics and chemistry, cloud and precipitation micro- and macro-physical properties, environmental thermodynamics and air quality-relevant constituents that are being used in follow-on analysis and modeling activities. We present the overall deployment setups, a summary of the campaign conditions and a sampling of early research results related to: (a) aerosol precursors in the urban environment, (b) influences of local meteorology on air pollution, (c) detailed observations of the sea breeze circulation, (d) retrieved supersaturation in convective updrafts, (e) characterizing the convective updraft lifecycle, (f) variability in lightning characteristics of convective storms and (g) urban influences on surface energy fluxes. The work concludes with discussion of future research activities highlighted by the TRACER model-intercomparison project to explore the representation of aerosol-convective interactions in high-resolution simulations. 
    more » « less
  2. Abstract The Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) field project deployed two aircraft and ground-based assets in the vicinity of Houston, TX, between 27 May 2022 and 2 July 2022, examining how meteorological conditions, dynamics, and aerosols control the initiation, early growth stage, and evolution of coastal convective clouds. To ensure that airborne and ground-based assets were deployed appropriately, a Forecasting and Nowcasting Team was formed. Daily forecasts guided real-time decision making by assessing synoptic weather conditions, environmental aerosol, and a variety of atmospheric modeling data to assign a probability for meeting specific ESCAPE campaign objectives. During the research flights, a small team of forecasters provided “nowcasting” support by analyzing radar, satellite, and new model data in real time. The nowcasting team proved invaluable to the campaign operation, as sometimes changing environmental conditions affected, for example, the timing of convective initiation. In addition to the success of the forecasting and nowcasting teams, the ESCAPE campaign offered a unique “testbed” opportunity where in-person and virtual support both contributed to campaign objectives. The forecasting and nowcasting teams were each composed of new and experienced forecasters alike, where new forecasters were given invaluable experience that would otherwise be difficult to attain. Both teams received training on forecast models, map analysis, HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modeling and thermodynamic sounding analysis before the beginning of the campaign. In this article, the ESCAPE forecasting and nowcasting teams reflects on these experiences, providing potentially useful advice for future field campaigns requiring forecasting and nowcasting support in a hybrid virtual/in-person framework. 
    more » « less
  3. null (Ed.)
    Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain. 
    more » « less
  4. Abstract. Optimizing radar observation strategies is one of the mostimportant considerations in pre-field campaign periods. This is especiallytrue for isolated convective clouds that typically evolve faster than theobservations captured by operational radar networks. This study investigatesuncertainties in radar observations of the evolution of the microphysicaland dynamical properties of isolated deep convective clouds developing inclean and polluted environments. It aims to optimize the radar observationstrategy for deep convection through the use of high-spatiotemporalcloud-resolving model simulations, which resolve the evolution of individualconvective cells every 1 min, coupled with a radar simulator and a celltracking algorithm. The radar simulation settings are based on the TrackingAerosol Convection Interactions ExpeRiment (TRACER) and Experiment of SeaBreeze Convection, Aerosols, Precipitation and Environment (ESCAPE) fieldcampaigns held in the Houston, TX, area but are generalizable to other fieldcampaigns focusing on isolated deep convection. Our analysis produces thefollowing four outcomes. First, a 5–7 m s−1 median difference inmaximum updrafts of tracked cells is shown between the clean and pollutedsimulations in the early stages of the cloud lifetimes. This demonstratesthe importance of obtaining accurate estimates of vertical velocity fromobservations if aerosol impacts are to be properly resolved. Second,tracking of individual cells and using vertical cross section scanning every minute capture the evolution of precipitation particle number concentration and size represented by polarimetric observables better than the operational radar observations that update the volume scan every 5 min. This approach also improves multi-Doppler radar updraft retrievals above 5 km above ground level for regions with updraft velocities greater than 10 m s−1. Third, we propose an optimized strategy composed of cell tracking by quick (1–2 min) vertical cross section scans from more than oneradar in addition to the operational volume scans. We also propose the useof a single-RHI (range height indicator) updraft retrieval technique for cellsclose to the radars, for which multi-Doppler radar retrievals are stillchallenging. Finally, increasing the number of deep convective cells sampledby such observations better represents the median maximum updraft evolutionwith sample sizes of more than 10 deep cells, which decreases the errorassociated with sampling the true population to less than 3 m s−1. 
    more » « less
  5. Abstract Heterogeneous landscapes can influence the development of convection through the generation of thermally driven mesoscale circulations. To assess the impacts of these circulations and their interaction with sea breezes, we simulated convection in an idealized coastal environment using the Regional Atmospheric Modeling System (RAMS). We compared simulations with striped patterns of surface vegetation to those of uniform vegetation to identify the importance of vegetation heterogeneity in impacting convective development. Under dry soil conditions representative of those during the Tracking Aerosol Convection Interactions Experiment (TRACER) and Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE) campaigns in June 2022, we found that these vegetation-induced circulations, referred to in the literature as “forest breezes,” are more important than the sea breeze in determining the location of convection initiation. Convection and precipitation are also found to be favored over forests and suppressed over pasture and suburban landscapes as a result of greater surface sensible heat flux over the forest. Our findings also indicate that forest breezes are important for initiating convection along the boundaries of the forest, but that cold pools may play a key role in propagating the forest breezes toward the center of the forest stripe. In our simulations, the collisions of these breezes in the center of the forest stripe lead to uplift and strong convection there; however, a different width of the forest stripe would alter when the forest breezes collide or whether they collide at all. The presence of these cold pools may therefore impact the “ideal stripe width,” the width of each vegetation stripe which maximizes domain-wide precipitation. 
    more » « less