skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 29, 2025

Title: High temperatures are associated with decreased immune system performance in a wild primate
Rising temperatures due to climate change are predicted to threaten the persistence of wild animals, but there is little evidence that climate change has pushed species beyond their thermal tolerance. The immune system is an ideal avenue to assess the effects of climate change because immune performance is sensitive to changes in temperature and immune competency can affect reproductive success. We investigate the effect of rising temperatures on a biomarker of nonspecific immune performance in a wild population of capuchin monkeys and provide compelling evidence that immune performance is associated with ambient temperature. Critically, we found that immune performance in young individuals is more sensitive to high temperatures compared to other age groups. Coupled with evidence of rising temperatures in the region, our results offer insight into how climate change will affect the immune system of wild mammals.  more » « less
Award ID(s):
2127373 2236061 2341358
PAR ID:
10569281
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Sciences Advances
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
48
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Predicting the effects of climate change on plant disease is critical for protecting ecosystems and food production. Here, we show how disease pressure responds to short‐term weather, historical climate and weather anomalies by compiling a global database (4339 plant–disease populations) of disease prevalence in both agricultural and wild plant systems. We hypothesised that weather and climate would play a larger role in disease in wild versus agricultural plant populations, which the results supported. In wild systems, disease prevalence peaked when the temperature was 2.7°C warmer than the historical average for the same time of year. We also found evidence of a negative interactive effect between weather anomalies and climate in wild systems, consistent with the idea that climate maladaptation can be an important driver of disease outbreaks. Temperature and precipitation had relatively little explanatory power in agricultural systems, though we observed a significant positive effect of current temperature. These results indicate that disease pressure in wild plants is sensitive to nonlinear effects of weather, weather anomalies and their interaction with historical climate. In contrast, warmer temperatures drove risks for agricultural plant disease outbreaks within the temperature range examined regardless of historical climate, suggesting vulnerability to ongoing climate change. 
    more » « less
  2. Anthropogenic climate change has increased the frequency and intensity of marine heatwaves that may broadly impact the health of marine invertebrates. Rising ocean temperatures lead to increases in disease prevalence in marine organisms; it is therefore critical to understand how marine heatwaves impact immune system devel- opment. The purple sea urchin (Strongylocentrotus purpuratus) is an ecologically important, broadcast-spawning, omnivore that primarily inhabits kelp forests in the northeastern Pacific Ocean. The S. purpuratus life cycle in- cludes a relatively long-lived (~2 months) planktotrophic larval stage. Larvae have a well-characterized cellular immune system that is mediated, in part, by a subset of mesenchymal cells known as pigment cells. To assess the role of environmental temperature on the development of larval immune cells, embryos were generated from adult sea urchins conditioned at 14 C. Embryos were then cultured in either ambient (14 C) or elevated (18 C) seawater. Results indicate that larvae raised in an elevated temperature were slightly larger and had more pigment cells than those raised at ambient temperature. Further, the larval phenotypes varied significantly among genetic crosses, which highlights the importance of genotype in structuring how the immune system develops in the context of the environment. Overall, these results indicate that larvae are phenotypically plastic in modulating their immune cells and body length in response to adverse developmental conditions 
    more » « less
  3. McGraw, Elizabeth A. (Ed.)
    The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging. 
    more » « less
  4. Abstract Increasing temperatures during climate change are known to alter the phenology across diverse plant taxa, but the evolutionary outcomes of these shifts are poorly understood. Moreover, plant temperature‐sensing pathways are known to interact with competition‐sensing pathways, yet there remains little experimental evidence for how genotypes varying in temperature responsiveness react to warming in realistic competitive settings.We compared flowering time and fitness responses to warming and competition for two near‐isogenic lines (NILs) ofArabidopsis thalianatransgressively segregating temperature‐sensitive and temperature‐insensitive alleles for major‐effect flowering time genes. We grew focal plants of each genotype in intraspecific and interspecific competition in four treatments contrasting daily temperature profiles in summer and fall under contemporary and warmed conditions. We measured phenology and fitness of focal plants to quantify plastic responses to season, temperature and competition and the dependence of these responses on flowering time genotype.The temperature‐insensitive NIL was constitutively early flowering and less fit, except in a future‐summer climate in which its fitness was higher than the later flowering, temperature‐sensitive NIL in low competition. The late‐flowering NIL showed accelerated flowering in response to intragenotypic competition and to increased temperature in the summer but delayed flowering in the fall. However, its fitness fell with rising temperatures in both seasons, and in the fall its marginal fitness gain from decreasing competition was diminished in the future.Functional alleles at temperature‐responsive genes were necessary for plastic responses to season, warming and competition. However, the plastic genotype was not the most fit in every experimental condition, becoming less fit than the temperature‐canalized genotype in the warm summer treatment.Climate change is often predicted to have deleterious effects on plant populations, and our results show how increased temperatures can act through genotype‐dependent phenology to decrease fitness. Furthermore, plasticity is not necessarily adaptive in rapidly changing environments since a nonplastic genotype proved fitter than a plastic genotype in a warming climate treatment. Aplain language summaryis available for this article. 
    more » « less
  5. Abstract Rising ocean temperatures pose significant threats to marine ectotherms. Sensitivity to temperature change varies across life stages, with embryos often being less tolerant to thermal perturbation than adults. Antarctic notothenioid fishes evolved to occupy a narrow, cold thermal regime (−2 to +2°C) as the high-latitude Southern Ocean (SO) cooled to its present icy temperatures, and they are particularly vulnerable to small temperature changes, which makes them ideal sentinel species for assessing climate change impacts. Here, we detail how predicted warming of the SO may affect embryonic development in the Antarctic bullhead notothen,Notothenia coriiceps. Experimental embryos were incubated at +4°C, a temperature projected for the high-latitude SO within the next 100–200 years under high emission climate models, whereas control embryos were incubated at present-day ambient temperature, ∼0°C. Elevated temperature caused a high incidence of embryonic morphological abnormalities, including body axis kinking/curvature and reduced body size. Experimental embryos also developed more rapidly, such that they hatched 68 days earlier than controls (87 vs. 155 days post-fertilization). Accelerated development disrupted the evolved timing of seasonal hatching, shifting larval emergence into the polar winter when food availability is scarce. Transcriptomic analyses revealed molecular signatures of hypoxia and disrupted protein-folding in near-hatching embryos, indicative of severe cellular stress. Predictive modeling suggested that temperature-induced developmental disruptions would narrow seasonal reproductive windows, thereby threatening population viability under future climate scenarios. Together, our findings underscore the vulnerability of Antarctic fish embryos to higher water temperature and highlight the urgent need to understand the consequences of disruption of this important trophic component on ecosystem stability in the SO. Significance StatementAntarctic fishes evolved cold-adapted phenotypes suited to the stable thermal conditions of the Southern Ocean, yet are threatened by rising temperatures. The impact of rising temperatures on early life stages in Antarctic fishes is not well understood; our findings show that projected warming may induce premature hatching, developmental abnormalities, and molecular stress responses in embryos, potentially reducing recruitment and leading to population instability and trophic-level ecosystem disruptions. These results underscore the urgency of assessing climate-driven vulnerabilities across life stages of Antarctic marine organisms to refine population projections and enhance conservation strategies amid ongoing environmental change. 
    more » « less