skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: InsectNet: Real-time identification of insects using an end-to-end machine learning pipeline
Abstract Insect pests significantly impact global agricultural productivity and crop quality. Effective integrated pest management strategies require the identification of insects, including beneficial and harmful insects. Automated identification of insects under real-world conditions presents several challenges, including the need to handle intraspecies dissimilarity and interspecies similarity, life-cycle stages, camouflage, diverse imaging conditions, and variability in insect orientation. An end-to-end approach for training deep-learning models, InsectNet, is proposed to address these challenges. Our approach has the following key features: (i) uses a large dataset of insect images collected through citizen science along with label-free self-supervised learning to train a global model, (ii) fine-tuning this global model using smaller, expert-verified regional datasets to create a local insect identification model, (iii) which provides high prediction accuracy even for species with small sample sizes, (iv) is designed to enhance model trustworthiness, and (v) democratizes access through streamlined machine learning operations. This global-to-local model strategy offers a more scalable and economically viable solution for implementing advanced insect identification systems across diverse agricultural ecosystems. We report accurate identification (>96% accuracy) of numerous agriculturally and ecologically relevant insect species, including pollinators, parasitoids, predators, and harmful insects. InsectNet provides fine-grained insect species identification, works effectively in challenging backgrounds, and avoids making predictions when uncertain, increasing its utility and trustworthiness. The model and associated workflows are available through a web-based portal accessible through a computer or mobile device. We envision InsectNet to complement existing approaches, and be part of a growing suite of AI technologies for addressing agricultural challenges.  more » « less
Award ID(s):
1954556
PAR ID:
10569298
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
4
Issue:
1
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kajtoch, Łukasz (Ed.)
    This study presents an initial model for bark beetle identification, serving as a foundational step toward developing a fully functional and practical identification tool. Bark beetles are known for extensive damage to forests globally, as well as for uniform and homoplastic morphology which poses identification challenges. Utilizing a MaxViT-based deep learning backbone which utilizes local and global attention to classify bark beetles down to the genus level from images containing multiple beetles. The methodology involves a process of image collection, preparation, and model training, leveraging pre-classified beetle species to ensure accuracy and reliability. The model's F1 score estimates of 0.99 and 1.0 indicates a strong ability to accurately classify genera in the collected data, including those previously unknown to the model. This makes it a valuable first step towards building a tool for applications in forest management and ecological research. While the current model distinguishes among 12 genera, further refinement and additional data will be necessary to achieve reliable species-level identification, which is particularly important for detecting new invasive species. Despite the controlled conditions of image collection and potential challenges in real-world application, this study provides the first model capable of identifying the bark beetle genera, and by far the largest training set of images for any comparable insect group. We also designed a function that reports if a species appears to be unknown. Further research is suggested to enhance the model's generalization capabilities and scalability, emphasizing the integration of advanced machine learning techniques for improved species classification and the detection of invasive or undescribed species. 
    more » « less
  2. The insect virome is composed of a myriad of viruses. Both field populations and laboratory colonies of insects harbour diverse viruses, including viruses that infect the insect itself, viruses of microbes associated with the insect, and viruses associated with ingested materials. Metagenomics analysis for identification of virus-derived sequences has allowed for new appreciation of the extent and diversity of the insect virome. The complex interactions between insect viruses and host antiviral immune pathways (RNA interference and apoptosis), and between viruses and other members of the microbiome (e.g. Wolbachia) are becoming apparent. In this chapter, an overview of the diversity of viruses in insects and recent virus discovery research for specific insects and insect-derived cell lines is provided. The opportunities and challenges associated with the insect virome, including the potential impacts of viruses on both research and insect management programs are also addressed. 
    more » « less
  3. IntroductionEffective monitoring of insect-pests is vital for safeguarding agricultural yields and ensuring food security. Recent advances in computer vision and machine learning have opened up significant possibilities of automated persistent monitoring of insect-pests through reliable detection and counting of insects in setups such as yellow sticky traps. However, this task is fraught with complexities, encompassing challenges such as, laborious dataset annotation, recognizing small insect-pests in low-resolution or distant images, and the intricate variations across insect-pests life stages and species classes. MethodsTo tackle these obstacles, this work investigates combining two solutions, Hierarchical Transfer Learning (HTL) and Slicing-Aided Hyper Inference (SAHI), along with applying a detection model. HTL pioneers a multi-step knowledge transfer paradigm, harnessing intermediary in-domain datasets to facilitate model adaptation. Moreover, slicing-aided hyper inference subdivides images into overlapping patches, conducting independent object detection on each patch before merging outcomes for precise, comprehensive results. ResultsThe outcomes underscore the substantial improvement achievable in detection results by integrating a diverse and expansive in-domain dataset within the HTL method, complemented by the utilization of SAHI. DiscussionWe also present a hardware and software infrastructure for deploying such models for real-life applications. Our results can assist researchers and practitioners looking for solutions for insect-pest detection and quantification on yellow sticky traps. 
    more » « less
  4. Tomanovic, Zeljko (Ed.)
    Endophytic insects, including gall insects and leaf miners, are prominent in both natural and agricultural plant communities. We catalog the endophytic insect fauna in North America that are known to associate with rosinweeds (SilphiumL., Heliantheae, Asteraceae). We provide details on host plant species, brief descriptions of insect associations, and known distributions of their association withSilphiumspecies. We report associations with rosinweeds for 41 insect species from 18 families across four insect orders and detail the host plant tissue where these insects occur. The complex community we describe suggests that a further study of rosinweed endophytic insects could be useful to understanding evolution of host‐plant preferences andSilphiumspecies boundaries. 
    more » « less
  5. Abstract Insect pests cause significant damage to food production, so early detection and efficient mitigation strategies are crucial. There is a continual shift toward machine learning (ML)‐based approaches for automating agricultural pest detection. Although supervised learning has achieved remarkable progress in this regard, it is impeded by the need for significant expert involvement in labeling the data used for model training. This makes real‐world applications tedious and oftentimes infeasible. Recently, self‐supervised learning (SSL) approaches have provided a viable alternative to training ML models with minimal annotations. Here, we present an SSL approach to classify 22 insect pests. The framework was assessed on raw and segmented field‐captured images using three different SSL methods, Nearest Neighbor Contrastive Learning of Visual Representations (NNCLR), Bootstrap Your Own Latent, and Barlow Twins. SSL pre‐training was done on ResNet‐18 and ResNet‐50 models using all three SSL methods on the original RGB images and foreground segmented images. The performance of SSL pre‐training methods was evaluated using linear probing of SSL representations and end‐to‐end fine‐tuning approaches. The SSL‐pre‐trained convolutional neural network models were able to perform annotation‐efficient classification. NNCLR was the best performing SSL method for both linear and full model fine‐tuning. With just 5% annotated images, transfer learning with ImageNet initialization obtained 74% accuracy, whereas NNCLR achieved an improved classification accuracy of 79% for end‐to‐end fine‐tuning. Models created using SSL pre‐training consistently performed better, especially under very low annotation, and were robust to object class imbalances. These approaches help overcome annotation bottlenecks and are resource efficient. 
    more » « less