skip to main content

Search for: All records

Award ID contains: 1954556

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    COVID‐19 has led to an unprecedented increase in the use of technology for teaching and learning in higher education institutions (HEIs), including in engineering, computing, and technology programs. Given the urgency of the situation, technologies were often implemented with a short‐term rather than long‐term view.


    In this study, we investigate students' perceptions of the use of video‐based monitoring (VbM) for proctoring exams to better assess its impact on students. We leverage technological ambivalence as a framing lens to analyze students' experiences and perceptions of using VbM and draw implications for responsible use of educational technology.


    Qualitative data were collected from students using focus group interviews and discussion board assignments and analyzed inductively to understand students' experiences.


    We present a framework of how a technological shift of existing practice triggered ambivalence that manifested itself as a sustained negative outlook among students regarding the use of VbM, as well as their institution and instructors. Students accepted the inevitability of the technology but were unconvinced that the benefits of VbM outweighed its risks.


    As instructors use educational technologies that are inherently driven by user data and algorithms that are not transparent, it is imperative that they are attentive to the responsible use of technology. To educate future engineers who are ethically and morally responsible, engineering educators and engineering institutions need to exhibit that behavior in their own practices, starting with their use of educational technologies.

    more » « less
  2. Using a reliable and accurate method to phenotype disease incidence and severity is essential to unravel the complex genetic architecture of disease resistance in plants, and to develop disease resistant cultivars. Genome-wide association studies (GWAS) involve phenotyping large numbers of accessions, and have been used for a myriad of traits. In field studies, genetic accessions are phenotyped across multiple environments and replications, which takes a significant amount of labor and resources. Deep Learning (DL) techniques can be effective for analyzing image-based tasks; thus DL methods are becoming more routine for phenotyping traits to save time and effort. This research aims to conduct GWAS on sudden death syndrome (SDS) of soybean [ Glycine max L. (Merr.)] using disease severity from both visual field ratings and DL-based (using images) severity ratings collected from 473 accessions. Images were processed through a DL framework that identified soybean leaflets with SDS symptoms, and then quantified the disease severity on those leaflets into a few classes with mean Average Precision of 0.34 on unseen test data. Both visual field ratings and image-based ratings identified significant single nucleotide polymorphism (SNP) markers associated with disease resistance. These significant SNP markers are either in the proximity of previously reported candidate genes for SDS or near potentially novel candidate genes. Four previously reported SDS QTL were identified that contained a significant SNPs, from this study, from both a visual field rating and an image-based rating. The results of this study provide an exciting avenue of using DL to capture complex phenotypic traits from images to get comparable or more insightful results compared to subjective visual field phenotyping of traits for disease symptoms. 
    more » « less
  3. How can the public sector use AI ethically and responsibly for the benefit of people? The sustainable development and deployment of artificial intelligence (AI) in the public sector requires dialogue and deliberation between developers, decision makers, deployers, end users, and the public. This paper contributes to the debate on how to develop persuasive government approaches for steering the development and use of AI. We examine the ethical issues and the role of the public in the debate on developing public sector governance of socially and democratically sustainable and technology-intensive societies. To concretize this discussion, we study the co-development of a Finnish national AI program AuroraAI, which aims to provide citizens with tailored and timely services for different life situations, utilizing AI. With the help of this case study, we investigate the challenges posed by the development and use of AI in the service of public administration. We draw particular attention to the efforts made by the AuroraAI Ethics Board in deliberating the AuroraAI solution options and working toward a sustainable and inclusive AI society. 
    more » « less
  4. Reliable seed yield estimation is an indispensable step in plant breeding programs geared towards cultivar development in major row crops. The objective of this study is to develop a machine learning (ML) approach adept at soybean ( Glycine max L. (Merr.)) pod counting to enable genotype seed yield rank prediction from in-field video data collected by a ground robot. To meet this goal, we developed a multiview image-based yield estimation framework utilizing deep learning architectures. Plant images captured from different angles were fused to estimate the yield and subsequently to rank soybean genotypes for application in breeding decisions. We used data from controlled imaging environment in field, as well as from plant breeding test plots in field to demonstrate the efficacy of our framework via comparing performance with manual pod counting and yield estimation. Our results demonstrate the promise of ML models in making breeding decisions with significant reduction of time and human effort and opening new breeding method avenues to develop cultivars. 
    more » « less