skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: NeuPh: scalable and generalizable neural phase retrieval with local conditional neural fields
Award ID(s):
1846784
PAR ID:
10569474
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SPIE
Date Published:
Journal Name:
Advanced Photonics Nexus
Volume:
3
Issue:
05
ISSN:
2791-1519
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. We introduce Neural Radiosity, an algorithm to solve the rendering equation by minimizing the norm of its residual, similar as in classical radiosity techniques. Traditional basis functions used in radiosity, such as piecewise polynomials or meshless basis functions are typically limited to representing isotropic scattering from diffuse surfaces. Instead, we propose to leverage neural networks to represent the full four-dimensional radiance distribution, directly optimizing network parameters to minimize the norm of the residual. Our approach decouples solving the rendering equation from rendering (perspective) images similar as in traditional radiosity techniques, and allows us to efficiently synthesize arbitrary views of a scene. In addition, we propose a network architecture using geometric learnable features that improves convergence of our solver compared to previous techniques. Our approach leads to an algorithm that is simple to implement, and we demonstrate its effectiveness on a variety of scenes with diffuse and non-diffuse surfaces. 
    more » « less