skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Complexity to Clarity: Analytical Expressions of Deep Neural Network Weights via Clifford Algebra and Convexity
In this paper, we introduce a novel analysis of neural networks based on geometric (Clifford) algebra and convex optimization. We show that optimal weights of deep ReLU neural networks are given by the wedge product of training samples when trained with standard regularized loss. Furthermore, the training problem reduces to convex optimization over wedge product features, which encode the geometric structure of the training dataset. This structure is given in terms of signed volumes of triangles and parallelotopes generated by data vectors. The convex problem finds a small subset of samples via ℓ1 regularization to discover only relevant wedge product features. Our analysis provides a novel perspective on the inner workings of deep neural networks and sheds light on the role of the hidden layers.  more » « less
Award ID(s):
2236829
PAR ID:
10569658
Author(s) / Creator(s):
Publisher / Repository:
Transactions on Machine Learning Research
Date Published:
Journal Name:
Transactions on machine learning research
ISSN:
2835-8856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the fundamental mechanism behind the success of deep neural networks is one of the key challenges in the modern machine learning literature. Despite numerous attempts, a solid theoretical analysis is yet to be developed. In this paper, we develop a novel unified framework to reveal a hidden regularization mechanism through the lens of convex optimization. We first show that the training of multiple threelayer ReLU sub-networks with weight decay regularization can be equivalently cast as a convex optimization problem in a higher dimensional space, where sparsity is enforced via a group `1- norm regularization. Consequently, ReLU networks can be interpreted as high dimensional feature selection methods. More importantly, we then prove that the equivalent convex problem can be globally optimized by a standard convex optimization solver with a polynomial-time complexity with respect to the number of samples and data dimension when the width of the network is fixed. Finally, we numerically validate our theoretical results via experiments involving both synthetic and real datasets. 
    more » « less
  2. We introduce randomized algorithms to Clifford's Geometric Algebra, generalizing randomized linear algebra to hypercomplex vector spaces. This novel approach has many implications in machine learning, including training neural networks to global optimality via convex optimization. Additionally, we consider fine-tuning large language model (LLM) embeddings as a key application area, exploring the intersection of geometric algebra and modern AI techniques. In particular, we conduct a comparative analysis of the robustness of transfer learning via embeddings, such as OpenAI GPT models and BERT, using traditional methods versus our novel approach based on convex optimization. We test our convex optimization transfer learning method across a variety of case studies, employing different embeddings (GPT-4 and BERT embeddings) and different text classification datasets (IMDb, Amazon Polarity Dataset, and GLUE) with a range of hyperparameter settings. Our results demonstrate that convex optimization and geometric algebra not only enhances the performance of LLMs but also offers a more stable and reliable method of transfer learning via embeddings. 
    more » « less
  3. This paper introduces a novel theoretical framework for the analysis of vector-valued neu- ral networks through the development of vector-valued variation spaces, a new class of reproducing kernel Banach spaces. These spaces emerge from studying the regularization e↵ect of weight decay in training networks with activation functions like the rectified linear unit (ReLU). This framework o↵ers a deeper understanding of multi-output networks and their function-space characteristics. A key contribution of this work is the development of a representer theorem for the vector-valued variation spaces. This representer theorem estab- lishes that shallow vector-valued neural networks are the solutions to data-fitting problems over these infinite-dimensional spaces, where the network widths are bounded by the square of the number of training data. This observation reveals that the norm associated with these vector-valued variation spaces encourages the learning of features that are useful for multiple tasks, shedding new light on multi-task learning with neural networks. Finally, this paper develops a connection between weight-decay regularization and the multi-task lasso problem. This connection leads to novel bounds for layer widths in deep networks that depend on the intrinsic dimensions of the training data representations. This insight not only deepens the understanding of the deep network architectural requirements, but also yields a simple convex optimization method for deep neural network compression. The performance of this compression procedure is evaluated on various architectures. 
    more » « less
  4. When training overparameterized deep networks for classification tasks, it has been widely observed that the learned features exhibit a so-called “neural collapse” phenomenon. More specifically, for the output features of the penultimate layer, for each class the within-class features converge to their means, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer’s classifier. As feature normalization in the last layer becomes a common practice in modern representation learning, in this work we theoretically justify the neural collapse phenomenon under normalized features. Based on an un-constrained feature model, we simplify the empirical loss function in a multi-class classification task into a nonconvex optimization problem over the Riemannian manifold by constraining all features and classifiers over the sphere. In this context, we analyze the nonconvex landscape of the Riemannian optimization problem over the product of spheres, showing a benign global landscape in the sense that the only global minimizers are the neural collapse solutions while all other critical points are strict saddle points with negative curvature. Experimental results on practical deep networks corroborate our theory and demonstrate that better representations can be learned faster via feature normalization. Code for our experiments can be found at https://github.com/cjyaras/normalized-neural-collapse. 
    more » « less
  5. Commercial satellite sensors offer the luxury of mapping of individual permafrost features and their change over time. Deep learning convolutional neural nets (CNNs) demonstrate a remarkable success in automated image analysis. Inferential strengths ofCNNmodels are driven primarily by the quality and volume of hand-labeled training samples. Production of hand-annotated samples is a daunting task. This is particularly true for regional-scale mapping applications, such as permafrost feature detection across the Arctic. Image augmentation is a strategic data-space solution to synthetically inflate the size and quality of training samples by transforming the color space or geometric shape or by injecting noise. In this study, we systematically investigate the effectiveness of a spectrum of augmentation methods when applied toCNNalgorithms to recognize ice-wedge polygons from commercial satellite imagery. Our findings suggest that a list of augmentation methods (such as hue, saturation, and salt and pepper noise) can increase the model performance. 
    more » « less