skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resetting tropospheric OH and CH 4 lifetime with ultraviolet H 2 O absorption
The decay of methyl chloroform, a banned ozone-depleting substance, has provided a clear observational metric of mean tropospheric hydroxyl radical (OH) abundance. Almost all current global chemistry models calculate about 15% too much OH and thus too rapid methane loss. Methane is a short-lived climate forcer, critical to achieving global warming targets, and this error affects our model projections of climate change. New observations of water vapor absorption in the ultraviolet region (290 to 350 nanometers) imply reductions in sunlight with key photolysis rates decreasing by 8 to 12% in the near-surface tropical atmosphere. Incorporation of this new mechanism in a chemistry-transport model reduces OH and methane loss by only 4%, but combined with other proposed mechanisms, such as tropospheric halogen chemistry (7%), we may be able to resolve this conundrum.  more » « less
Award ID(s):
2135749
PAR ID:
10569664
Author(s) / Creator(s):
;
Publisher / Repository:
AAAS Science
Date Published:
Journal Name:
Science
Volume:
385
Issue:
6705
ISSN:
0036-8075
Page Range / eLocation ID:
201 to 204
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We present an updated mechanism for tropospheric halogen (Cl + Br + I) chemistry in the GEOS-Chem global atmospheric chemical transportmodel and apply it to investigate halogen radical cycling and implications for tropospheric oxidants. Improved representation of HOBr heterogeneouschemistry and its pH dependence in our simulation leads to less efficient recycling and mobilization of bromine radicals and enables the model toinclude mechanistic sea salt aerosol debromination without generating excessive BrO. The resulting global mean tropospheric BrO mixingratio is 0.19 ppt (parts per trillion), lower than previous versions of GEOS-Chem. Model BrO shows variable consistency and biases in comparison tosurface and aircraft observations in marine air, which are often near or below the detection limit. The model underestimates the daytimemeasurements of Cl2 and BrCl from the ATom aircraft campaign over the Pacific and Atlantic, which if correct would imply a very largemissing primary source of chlorine radicals. Model IO is highest in the marine boundary layer and uniform in the free troposphere, with a globalmean tropospheric mixing ratio of 0.08 ppt, and shows consistency with surface and aircraft observations. The modeled global meantropospheric concentration of Cl atoms is 630 cm−3, contributing 0.8 % of the global oxidation of methane, 14 % of ethane,8 % of propane, and 7 % of higher alkanes. Halogen chemistry decreases the global tropospheric burden of ozone by 11 %,NOx by 6 %, and OH by 4 %. Most of the ozone decrease is driven by iodine-catalyzed loss. The resulting GEOS-Chem ozonesimulation is unbiased in the Southern Hemisphere but too low in the Northern Hemisphere. 
    more » « less
  2. We present a comprehensive simulation of tropospheric chlorine within the GEOS-Chem global 3-D model of oxidant–aerosol–halogen atmospheric chemistry. The simulation includes explicit accounting of chloride mobilization from sea salt aerosol by acid displacement of HCl and by other heterogeneous processes. Additional small sources of tropospheric chlorine (combustion, organochlorines, transport from stratosphere) are also included. Reactive gas-phase chlorine Cl*, including Cl, ClO, Cl2, BrCl, ICl, HOCl, ClNO3, ClNO2, and minor species, is produced by the HCl+OH reaction and by heterogeneous conversion of sea salt aerosol chloride to BrCl, ClNO2, Cl2, and ICl. The model successfully simulates the observed mixing ratios of HCl in marine air (highest at northern midlatitudes) and the associated HNO3 decrease from acid displacement. It captures the high ClNO2 mixing ratios observed in continental surface air at night and attributes the chlorine to HCl volatilized from sea salt aerosol and transported inland following uptake by fine aerosol. The model successfully simulates the vertical profiles of HCl measured from aircraft, where enhancements in the continental boundary layer can again be largely explained by transport inland of the marine source. It does not reproduce the boundary layer Cl2 mixing ratios measured in the WINTER aircraft campaign (1–5 ppt in the daytime, low at night); the model is too high at night, which could be due to uncertainty in the rate of the ClNO2+Cl− reaction, but we have no explanation for the high observed Cl2 in daytime. The global mean tropospheric concentration of Cl atoms in the model is 620 cm−3 and contributes 1.0 % of the global oxidation of methane, 20 % of ethane, 14 % of propane, and 4 % of methanol. Chlorine chemistry increases global mean tropospheric BrO by 85 %, mainly through the HOBr+Cl− reaction, and decreases global burdens of tropospheric ozone by 7 % and OH by 3 % through the associated bromine radical chemistry. ClNO2 chemistry drives increases in ozone of up to 8 ppb over polluted continents in winter. 
    more » « less
  3. Abstract. We present a comprehensive simulation of tropospheric chlorinewithin the GEOS-Chem global 3-D model of oxidant–aerosol–halogen atmosphericchemistry. The simulation includes explicit accounting of chloridemobilization from sea salt aerosol by acid displacement of HCl and by otherheterogeneous processes. Additional small sources of tropospheric chlorine(combustion, organochlorines, transport from stratosphere) are also included.Reactive gas-phase chlorine Cl*, including Cl, ClO, Cl2, BrCl, ICl,HOCl, ClNO3, ClNO2, and minor species, is produced by theHCl+OH reaction and by heterogeneous conversion of sea salt aerosolchloride to BrCl, ClNO2, Cl2, and ICl. The modelsuccessfully simulates the observed mixing ratios of HCl in marine air(highest at northern midlatitudes) and the associated HNO3decrease from acid displacement. It captures the high ClNO2 mixingratios observed in continental surface air at night and attributes thechlorine to HCl volatilized from sea salt aerosol and transported inlandfollowing uptake by fine aerosol. The model successfully simulates thevertical profiles of HCl measured from aircraft, where enhancements in thecontinental boundary layer can again be largely explained by transport inlandof the marine source. It does not reproduce the boundary layer Cl2mixing ratios measured in the WINTER aircraft campaign (1–5 ppt in thedaytime, low at night); the model is too high at night, which could be due touncertainty in the rate of the ClNO2+Cl- reaction, but we haveno explanation for the high observed Cl2 in daytime. The globalmean tropospheric concentration of Cl atoms in the model is 620 cm−3and contributes 1.0 % of the global oxidation of methane, 20 % ofethane, 14 % of propane, and 4 % of methanol. Chlorine chemistryincreases global mean tropospheric BrO by 85 %, mainly through theHOBr+Cl- reaction, and decreases global burdens of troposphericozone by 7 % and OH by 3 % through the associated bromine radicalchemistry. ClNO2 chemistry drives increases in ozone of up to8 ppb over polluted continents in winter. 
    more » « less
  4. Abstract Marine cloud brightening (MCB) is proposed to offset global warming by emitting sea salt aerosols to the tropical marine boundary layer, which increases aerosol and cloud albedo. Sea salt aerosol is the main source of tropospheric reactive chlorine (Cly) and bromine (Bry). The effects of additional sea salt on atmospheric chemistry have not been explored. We simulate sea salt aerosol injections for MCB under two scenarios (212–569 Tg/a) in the GEOS‐Chem global chemical transport model, only considering their impacts as a halogen source. Globally, tropospheric Clyand Bryincrease (20–40%), leading to decreased ozone (−3 to −6%). Consequently, OH decreases (−3 to −5%), which increases the methane lifetime (3–6%). Our results suggest that the chemistry of the additional sea salt leads to minor total radiative forcing compared to that of the sea salt aerosol itself (~2%) but may have potential implications for surface ozone pollution in tropical coastal regions. 
    more » « less
  5. Abstract. Tropospheric ozone is a major air pollutant and greenhouse gas. It is also the primary precursor of OH, the main tropospheric oxidant. Global atmospheric chemistry models show large differences in their simulations of tropospheric ozone budgets. Here we implement the widely used GEOS-Chem atmospheric chemistry module as an alternative to CAM-chem within the Community Earth System Model version 2 (CESM2). We compare the resulting GEOS-Chem and CAM-chem simulations of tropospheric ozone and related species within CESM2 to observations from ozonesondes, surface sites, the ATom-1 aircraft campaign over the Pacific and Atlantic, and the KORUS-AQ aircraft campaign over the Seoul Metropolitan Area. We find that GEOS-Chem and CAM-chem within CESM2 have similar tropospheric ozone budgets and concentrations usually within 5 ppb but important differences in the underlying processes including (1) photolysis scheme (no aerosol effects in CAM-chem), (2) aerosol nitrate photolysis, (3) N2O5 cloud uptake, (4) tropospheric halogen chemistry, and (5) ozone deposition to the oceans. Global tropospheric OH concentrations are the same in both models, but there are large regional differences reflecting the above processes. Carbon monoxide is lower in CAM-chem (and lower than observations), at least in part because of higher OH concentrations in the Northern Hemisphere and insufficient production from isoprene oxidation in the Southern Hemisphere. CESM2 does not scavenge water-soluble gases in convective updrafts, leading to some upper-tropospheric biases. Comparison to KORUS-AQ observations shows an overestimate of ozone above 4 km altitude in both models, which at least in GEOS-Chem is due to inadequate scavenging of particulate nitrate in convective updrafts in CESM2, leading to excessive NO production from nitrate photolysis. The KORUS-AQ comparison also suggests insufficient boundary layer mixing in CESM2. This implementation and evaluation of GEOS-Chem in CESM2 contribute to the MUSICA vision of modularizing tropospheric chemistry in Earth system models. 
    more » « less