Abstract Both high resolution and high precision are required to quantitatively determine the atomic structure of complex nanostructured materials. However, for conventional imaging methods in scanning transmission electron microscopy (STEM), atomic resolution with picometer precision cannot usually be achieved for weakly-scattering samples or radiation-sensitive materials, such as 2D materials. Here, we demonstrate low-dose, sub-angstrom resolution imaging with picometer precision using mixed-state electron ptychography. We show that correctly accounting for the partial coherence of the electron beam is a prerequisite for high-quality structural reconstructions due to the intrinsic partial coherence of the electron beam. The mixed-state reconstruction gains importance especially when simultaneously pursuing high resolution, high precision and large field-of-view imaging. Compared with conventional atomic-resolution STEM imaging techniques, the mixed-state ptychographic approach simultaneously provides a four-times-faster acquisition, with double the information limit at the same dose, or up to a fifty-fold reduction in dose at the same resolution.
more »
« less
In Situ Formation of Ripplocations in Hybrid Organic–Inorganic MXenes
Abstract Inorganic–organic hybrid MXenes (h‐MXenes) are a family of 2D transition metal carbides and nitrides functionalized with alkylimido and alkylamido surface groups. Using cryogenic and room temperature scanning transmission electron microscopy (STEM) and electron energy‐loss spectroscopy (EELS), it is shown that ripplocations, a form of a fundamental defect in 2D and layered structures, are abundant in this family of materials. Furthermore, detailed studies of electron probe sample interactions, focusing on structural deformations caused by the electron beam are presented. The findings indicate that at cryogenic temperatures (≈100 K) and below a specific dose threshold, the structure of h‐MXenes remains largely intact. However, exceeding this threshold leads to electron beam‐induced deformation through ripplocations. Interestingly, the deformation behavior, required dose, and resultant structure are highly dependent on temperature. At 100 K, it is demonstrated that the electron beam can induce ripplocations in situ with a high degree of precision.
more »
« less
- PAR ID:
- 10569714
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 13
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It is essential to understand the nanoscale structure and chemistry of energy storage materials due to their profound impact on battery performance. However, it is often challenging to characterize them at high resolution, as they are often fundamentally altered by sample preparation methods. Here, we use the cryogenic lift-out technique in a plasma-focused ion beam (PFIB)/scanning electron microscope (SEM) to prepare air-sensitive lithium metal to understand ion-beam damage during sample preparation. Through the use of cryogenic transmission electron microscopy, we find that lithium was not damaged by ion-beam milling although lithium oxide shells form in the PFIB/SEM chamber, as evidenced by diffraction information from cryogenic lift-out lithium lamellae prepared at two different thicknesses (130 and 225 nm). Cryogenic energy loss spectroscopy further confirms that lithium was oxidized during the process of sample preparation. The Ellingham diagram suggests that lithium can react with trace oxygen gas in the FIB/SEM chamber at cryogenic temperatures, and we show that liquid oxygen does not contribute to the oxidation of lithium process. Our results suggest the importance of understanding how cryogenic lift-out sample preparation has an impact on the high-resolution characterization of reactive battery materials.more » « less
-
The polarization difference and band offset between Al(Ga)N and GaN induce two-dimensional (2D) free carriers in Al(Ga)N/GaN heterojunctions without any chemical doping. A high-density 2D electron gas (2DEG), analogous to the recently discovered 2D hole gas in a metal-polar structure, is predicted in a N-polar pseudomorphic GaN/Al(Ga)N heterostructure on unstrained AlN. We report the observation of such 2DEGs in N-polar undoped pseudomorphic GaN/AlGaN heterostructures on single-crystal AlN substrates by molecular beam epitaxy. With a high electron density of ∼4.3 ×1013/cm2 that maintains down to cryogenic temperatures and a room temperature electron mobility of ∼450 cm2/V s, a sheet resistance as low as ∼320 Ω/◻ is achieved in a structure with an 8 nm GaN layer. These results indicate significant potential of AlN platform for future high-power RF electronics based on N-polar III-nitride high electron mobility transistors.more » « less
-
Abstract Halide perovskites are hailed as semiconductors of the 21stcentury. Chemical vapor deposition (CVD), a solvent‐free method, allows versatility in the growth of thin films of 3‐ and 2D organic–inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI3) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm−2. An optimum dosage of 35 000 µC cm−2results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI3, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3‐ and 2D halide perovskite films.more » « less
-
AlScN is attractive as a lattice-matched epitaxial barrier layer for incorporation in GaN high electron mobility transistors due to its large dielectric constant and polarization. The transport properties of polarization-induced two-dimensional (2D) electron gas of densities of ∼2×1013/cm2 formed at the AlScN–GaN interface is studied by Hall-effect measurements down to cryogenic temperatures. The 2D electron gas densities exhibit mobilities limited to ∼300 cm2/V s down to 10 K at AlScN/GaN heterojunctions. The insertion of a ∼2 nm AlN interlayer boosts the room temperature mobility by more than five times from ∼300 cm2/V s to ∼1573 cm2/V s, and the 10 K mobility by more than 20 times to ∼6980 cm2/V s at 10 K. These measurements provide guidelines to the limits of electron conductivities of these highly polar heterostructures.more » « less
An official website of the United States government
