skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The COVID-19 Pandemic’s Effect on Student Learning at Aviation Maintenance Technology Schools
In March 2020, students across the country experienced disruptions to their learning due to the COVID-19 crisis. Aviation Maintenance Technology Schools (AMTS) were no exception. These schools relied heavily on hands-on learning to train the next generation of aircraft maintenance technicians, but, for varying periods, students were unable to attend in-person classes and complete hands-on projects. Schools could delay learning until they could resume in-person classes, or they could switch to remote lectures and complete required projects once they returned in-person. Through a resilience engineering framework, this research explores AMTS’ responses to the crisis and the effect both disruption and institutional response had on student learning. The research team conducted 43 semi-structured interviews with administrators, instructors, and students at AMTS nationally. During these interviews, participants shared their personal and their Part 147 schools’ responses to the pandemic. Content analysis revealed that schools were under-prepared for any long-term disruption to their programs. Student learning suffered as a result. We discuss our research in relation to the effect on academic continuity and identify some ways which help mitigate disruptions.  more » « less
Award ID(s):
2037809
PAR ID:
10358820
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ATEC journal
Volume:
43
Issue:
1
ISSN:
1068-5901
Page Range / eLocation ID:
8-16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The COVID‐19 pandemic caused an abrupt change in educational programs worldwide, including workforce development education in community colleges. Given the hands‐on requirements of these programs, considerations for changes included if and how instructors and students could maintain academic continuity during the pandemic. This article focuses on aviation maintenance technology schools (AMTS) as a case study to understand how programs that rely heavily on hands‐on learning responded to COVID‐19 significant disruption to education. The Federal Aviation Administration (FAA) must approve educational training for aviation maintenance careers, and the FAA requires specific hands‐on activities in the curriculum. Of the 182 AMTS in the United States, 143 are located within community colleges. We conducted 43 interviews with AMTS students, administrators, and instructors from 18 different community colleges. Following content analysis of the interviews, the authors identified six findings related to how these programs responded to the pandemic, with special attention to maintaining academic stability. The article advocates for integrating digital learning tools (DLT) to create resilient educational programs when disruptions occur. These tools allow for students to continue to asynchronously practice the procedures and familiarize themselves with the materials needed for projects, provide students immediate feedback on their learning, and save schools money on expensive resources when students require extra practice on certain skills and processes. The application of these tools is relevant beyond the pandemic, helping students in many scenarios succeed in the face of natural disasters, family obligations, and the need for extra learning resources. 
    more » « less
  2. The emergence of the COVID-19 pandemic initiated major disruptions to higher education systems. Physical spaces that previously supported interpersonal interaction and community were abruptly inactivated, and faculty largely took on the responsibility of accommodating classroom structures in rapidly changing situations. This study employed interviews to examine how undergraduate Science, Technology, Engineering, and Mathematics (STEM) instructors adapted instruction to accommodate the mandated transition to virtual learning and how these accommodations supported or hindered community and belonging during the onset of the pandemic. Interviews with 25 STEM faculty at an undergraduate Hispanic Serving Institution revealed a wide range of accommodations they made to their courses and how they managed communication with students. Faculty strived to support student belonging with responses ranging from caring to crisis management, though some faculty expressed feelings of powerlessness when unable to accommodate certain challenges. The case of a responsive and flexible instructor is presented to highlight a productive response to a crisis. These retrospective findings point to strategies to support faculty teaching in virtual learning environments in the future; increasing opportunities for student–student and student–faculty interaction, supporting faculty in learning technologies that support these interactions and addressing faculty’s feelings of powerlessness. 
    more » « less
  3. Schools are increasingly offering opportunities for students to take classes in computer and information sciences, but the numbers and diversity of students who enroll and persist are not always representative of a school's student population. To meet these goals, students' needs and interests must be addressed. This paper will describe what matters for students in high school and community college computing classes. The data include interviews with 30 students (73% Latinx), surveys from 58 students (77% Latinx) and interviews with three counselors (2 college, 1 high school). The findings show that students will engage and persist in computing pathways when they: a) are project-based where those projects are hands-on and allow them to see the results of their work, b) create positive social connections and a sense of belonging, and c) create opportunities for learners to be active agents in their learning. Students will also enroll in computing classes to fulfill requirements for graduation or for a different major, but they are less likely to persist if they don't see the results of their work or have support and encouragement from teachers or counselors. The factors that are most important vary for high school and college students, and counselors are more likely to describe extrinsic sources of motivation. The findings are interpreted using self-determination theory, which provides a framework for understanding how students' sense of autonomy, competence, and connection influence their motivation to engage and persist in computing. 
    more » « less
  4. NA (Ed.)
    This Research paper explores the activities within the biologically inspired design-focused engineering curriculum to determine if they fostered students’ engagement in learning. This work builds on concurrent research exploring students' application of BID in engineering and teachers’ implementation of BID within their respective engineering classrooms. Participants comprised ninth-grade high school students (n=12) enrolled in the first-year engineering course across two high schools. Qualitative content analysis was conducted on classroom observation field notes, student focus groups, teacher curriculum enactment surveys, and teacher interviews. The finding revealed that student engagement varied across the seven-week-long unit. In the initial week, engagement was relatively low since the activities were static and required learning to be scaffolded via worksheets. However, during weeks three through six, engagement positively shifted due to the activities being more dynamic, requiring students to engage in inquiry and design learning. Furthermore, students’ academic engagement was fostered due to hands-on experiences and workbased authentic problems presented in the unit, which encouraged collaboration. 
    more » « less
  5. Online modes of teaching and learning have gained increased attention following the COVID-19 pandemic, resulting in education delivery trends likely to continue for the foreseeable future. It is therefore critical to understand the implications for student learning outcomes and their interest in or affinity towards the subject, particularly in water science classes, where educators have traditionally employed hands-on outdoor activities that are difficult to replicate online. In this study, we share our experiences adapting a field-based laboratory activity on groundwater to accommodate more than 700 students in our largest-enrollment general education course during the pandemic. As part of our adaptation strategy, we offered two versions of the same exercise, one in-person at the Mirror Lake Water Science Learning Laboratory, located on Ohio State University’s main campus, and one online. Although outdoor lab facilities have been used by universities since at least the 1970s, this research is novel in that 1) it considers not only student achievement but also affinity for the subject, 2) it is the first of its kind on The Ohio State University’s main campus, and 3) it was conducted during the COVID-19 pandemic, at a time when most university classes were unable to take traditional field trips. We used laboratory grades and a survey to assess differences in student learning and affinity outcomes for in-person and online exercises. Students who completed the in-person exercise earned better scores than their online peers. For example, in Fall 2021, the median lab score for the in-person group was 97.8%, compared to 91.7% for the online group. The in-person group also reported a significant ( p < 0.05) increase in how much they enjoyed learning about water, while online students reported a significant decrease. Online students also reported a significant decrease in how likely they would be to take another class in water or earth sciences. It is unclear whether the in-person exercise had better learning and affinity outcomes because of the hands-on, outdoor qualities of the lab or because the format allowed greater interaction among peers and teaching instructors (TAs). To mitigate disparities in student learning outcomes between the online and in-person course delivery, instructors will implement future changes to the online version of the lab to enhance interactions among students and TAs. 
    more » « less