Abstract Magnetic fields of molecular clouds in the central molecular zone (CMZ) have been relatively under-observed at sub-parsec resolution. Here, we report JCMT/POL2 observations of polarized dust emission in the CMZ, which reveal magnetic field structures in dense gas at ∼0.5 pc resolution. The 11 molecular clouds in our sample include two in the western part of the CMZ (Sgr C and a farside cloud candidate), four around the Galactic longitude 0 (the 50 km s−1cloud, CO 0.02−0.02, theStone, and theSticksandStrawamong the Three Little Pigs), and five along the Dust Ridge (G0.253+0.016, clouds b, c, d, and e/f), for each of which we estimate the magnetic field strength using the angular dispersion function method. The morphologies of magnetic fields in the clouds suggest potential imprints of feedback from expanding Hiiregions and young massive star clusters. A moderate correlation between the total viral parameter versus the star formation rate (SFR) and the dense gas fraction of the clouds is found. A weak correlation between the mass-to-flux ratio and the SFR, and a weak anticorrelation between the magnetic field and the dense gas fraction are also found. Comparisons between magnetic fields and other dynamic components in clouds suggest a more dominant role of self-gravity and turbulence in determining the dynamical states of the clouds and affecting star formation at the studied scales.
more »
« less
This content will become publicly available on July 16, 2026
Magnetic Fields in the Pillars of Creation
Abstract Due to dust grain alignment with magnetic fields, dust polarization observations of far-infrared emission from cold molecular clouds are often used to trace magnetic fields, allowing a probe of the effects of magnetic fields on the star formation process. We present inferred magnetic field maps of the Pillars of Creation region within the larger M16 emission nebula, derived from dust polarization data in the 89 and 154μm continuum using the Stratospheric Observatory For Infrared Astronomy/High-resolution Airborne Wideband Camera. We derive magnetic field strength estimates using the Davis–Chandrasekhar–Fermi method. We compare the polarization and magnetic field strengths to column densities and dust continuum intensities across the region to build a coherent picture of the relationship between star-forming activity and magnetic fields in the region. The projected magnetic field strengths derived are in the range of ∼50–130μG, which is typical for clouds of similarn(H2), i.e., molecular hydrogen volume density on the order of 104–105cm−3. We conclude that star formation occurs in the finger tips when the magnetic fields are too weak to prevent radial collapse due to gravity but strong enough to oppose OB stellar radiation pressure, while in the base of the fingers the magnetic fields hinder mass accretion and consequently star formation. We also support an initial weak-field model (<50μG) with subsequent strengthening through realignment and compression, resulting in a dynamically important magnetic field.
more »
« less
- PAR ID:
- 10643856
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 988
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 88
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a detailed study of the magnetic field structure in the G111 molecular cloud, a ring-like filamentary cloud within the NGC 7538 region. Our analysis combines multiwavelength polarization data and molecular-line observations to investigate the magnetic field’s role in the cloud’s formation and evolution. We utilized interstellar dust polarization from the Planck telescope to trace large-scale field orientations, starlight extinction polarization from the Kanata telescope to probe the cloud’s magnetic field after foreground subtraction, and velocity gradients derived from CO isotopologues observed with the IRAM 30 m telescope to examine dense regions. Our results reveal a coherent yet spatially varying magnetic field within G111. The alignment between Planck-derived orientations and starlight extinction polarization highlights significant foreground dust contamination, which we correct through careful subtraction. The global alignment of the magnetic field with density structures suggests that the field is dynamically important in shaping the cloud. Variations in CO-derived orientations further suggest that local dynamical effects, such as gravitational interactions and turbulence, influence the cloud’s structure. The curved magnetic field along the dense ridges, coinciding with mid-infrared emission in WISE data, indicates shock compression, likely driven by stellar feedback or supernova remnants. Our findings support a scenario where G111’s morphology results from turbulent shock-driven compression, rather than simple gravitational contraction. The interplay between magnetic fields and external forces is crucial in shaping molecular clouds and regulating star formation. Future high-resolution observations will be essential to further constrain the magnetic field’s role in cloud evolution.more » « less
-
Abstract We present Stratospheric Observatory For Infrared Astronomy (SOFIA) + Atacama Large Millimeter/submillimeter Array (ALMA) continuum and spectral-line polarization data on the massive molecular cloud BYF 73, revealing important details about the magnetic field morphology, gas structures, and energetics in this unusual massive star formation laboratory. The 154μm HAWC+ polarization map finds a highly organized magnetic field in the densest, inner 0.55 × 0.40 pc portion of the cloud, compared to an unremarkable morphology in the cloud’s outer layers. The 3 mm continuum ALMA polarization data reveal several more structures in the inner domain, including a parsec-long, ∼500M⊙“Streamer” around the central massive protostellar object MIR 2, with magnetic fields mostly parallel to the east–west Streamer but oriented north–south across MIR 2. The magnetic field orientation changes from mostly parallel to the column density structures to mostly perpendicular, at thresholdsNcrit= 6.6 × 1026m−2,ncrit= 2.5 × 1011m−3, andBcrit= 42 ± 7 nT. ALMA also mapped Goldreich–Kylafis polarization in12CO across the cloud, which traces, in both total intensity and polarized flux, a powerful bipolar outflow from MIR 2 that interacts strongly with the Streamer. The magnetic field is also strongly aligned along the outflow direction; energetically, it may dominate the outflow near MIR 2, comprising rare evidence for a magnetocentrifugal origin to such outflows. A portion of the Streamer may be in Keplerian rotation around MIR 2, implying a gravitating mass 1350 ± 50M⊙for the protostar+disk+envelope; alternatively, these kinematics can be explained by gas in free-fall toward a 950 ± 35M⊙object. The high accretion rate onto MIR 2 apparently occurs through the Streamer/disk, and could account for ∼33% of MIR 2's total luminosity via gravitational energy release.more » « less
-
Abstract We adopt the deep learning methodcasi-3d(convolutional approach to structure identification-3D) to infer the orientation of magnetic fields in sub-/trans-Alfvénic turbulent clouds from molecular line emission. We carry out magnetohydrodynamic simulations with different magnetic field strengths and use these to generate synthetic observations. We apply the 3D radiation transfer coderadmc-3dto model12CO and13CO (J = 1−0) line emission from the simulated clouds and then train acasi-3dmodel on these line emission data cubes to predict magnetic field morphology at the pixel level. The trainedcasi-3dmodel is able to infer magnetic field directions with a low error (≲10° for sub-Alfvénic samples and ≲30° for trans-Alfvénic samples). We further test the performance ofcasi-3don a real sub-/trans- Alfvénic region in Taurus. Thecasi-3dprediction is consistent with the magnetic field direction inferred from Planck dust polarization measurements. We use our developed methods to produce a new magnetic field map of Taurus that has a three times higher angular resolution than the Planck map.more » « less
-
Abstract Magnetic fields likely play an important role in the formation of young protostars. Multiscale and multiwavelength dust polarization observations can reveal the inferred magnetic field from scales of the cloud to core to protostar. We present continuum polarization observations of the young protostellar triple system IRAS 16293-2422 at 89μm using HAWC+ on SOFIA. The inferred magnetic field is very uniform with an average field angle of 89° ± 23° (E of N), which is different from the ∼170° field morphology seen at 850μm at larger scales (≳2000 au) with JCMT POL-2 and at 1.3 mm on smaller scales (≲300 au) with Atacama Large Millimeter/submillimeter Array. The HAWC+ magnetic field direction is aligned with the known E-W outflow. This alignment difference suggests that the shorter wavelength HAWC+ data is tracing the magnetic field associated with warmer dust likely from the outflow cavity, whereas the longer wavelength data are tracing the bulk magnetic field from cooler dust. Also, we show in this source the dust emission peak is strongly affected by the observing wavelength. The dust continuum peaks closer to source B (northern source) at shorter wavelengths and progressively moves toward the southern A source with increasing wavelength (from 22 to 850μm).more » « less
An official website of the United States government
