skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 23, 2026

Title: Growing microbiology literacy through interdisciplinary approaches to food fermentations and an Indigenous peoples’ rights framework
ABSTRACT New approaches to microbiology education are needed to ensure equitable representation in microbiology and to build literacy in microbiology and science broadly. To address this goal, we developed a course held at the collegiate level that uniquely integrated microbiology, Indigenous studies, science and technology studies, and arts and performance. The course participants included students in 12 majors across science, engineering, humanities, and arts. The different disciplines of the course intersected around Inuit fermented foods as the basis for discussions on fundamental microbiological principles, the scientific method, food sovereignty, and Indigenous peoples’ rights. A diverse array of activities was included, ranging from lectures in microbiology and fermentation, a sauerkraut-making lab, a walk through the Native American contemplative garden, a workshop on Inuit drum making and dance, as well as a performance by Inuit-soul group Pamyua. We propose that a radically interdisciplinary approach and a human rights framework in microbiology education can be a way to enhance microbiology and science literacy for a diverse group of students.  more » « less
Award ID(s):
2127438
PAR ID:
10569861
Author(s) / Creator(s):
; ; ;
Editor(s):
Pandey, Sumali
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Barker, Megan K (Ed.)
    ABSTRACT Collaboration and communication are important competencies for undergraduate life science education, as noted in theVision and Change in Undergraduate Biology Educationreport. However, initiating collaboration and communication in the classroom can be an anxiety-inducing experience for many students. In contrast to traditional-style icebreakers, we introduce a course content-focused icebreaker activity that served as a group-forming undertaking on the first day of class. We developed four sets of handouts (icebreaker tickets), each having a common course theme (e.g., microbiology, cell biology, physiological system infections/disorders, virology). Students were randomly provided with a ticket at the beginning of the course, and they worked to establish groups with their peers, based on their own interpretation of the ticket’s content and rationalization of a grouping scheme. Student feedback and engagement data collected from implementation at three independent institutions were largely positive, where students reported the activity to be an effective tool for building a course content-focused community of learners. The icebreaker tickets and instructor’s notes disseminated in this manuscript can be adapted to fit educators’ course goals and help set the tone for the first day of the class and beyond that fosters communication and collaboration among students. 
    more » « less
  2. The University of Southern California’s (USC) Joint Educational Project’s STEM Education Programs hosted a three-day summer workshop focused on marine microbiology and coastal deoxygenation for high school educators. To increase ocean literacy in high school students from Title I schools, topical marine science research was translated into four lesson plans appropriate for classrooms that teach biology and environmental science. The lesson plans focus on how marine microbes affect and are affected by the dissolved oxygen content of seawater but covered diverse oceanography topics including microbial ecology, nutrient cycling, physical ocean dynamics, and climate change. This education framework was designed to promote and facilitate hands on discovery-based learning and making observations about the natural world. The workshop and lesson plan development were executed in partnership with faculty and graduate students researching marine microbes and oceanography from USC’s Marine and Environmental Biology department to provide scientific expertise on the subject matter. At the workshop, educators were guided through each lesson plan and given classroom sets of materials to complete each of the experiments in their own classrooms. Educators also had the opportunity to experience the academic research process at both USC and the Wrigley Institute of Environmental Studies on Catalina Island, California. Teachers valued this interactive experience to learn from professional scientists and STEM educators. They left the workshop equipped with the knowledge and confidence to teach these marine microbiology and biogeochemistry concepts in their classrooms. 
    more » « less
  3. Abstract As generative artificial intelligence (AI) becomes increasingly integrated into society and education, more institutions are implementing AI usage policies and offering introductory AI courses. These courses, however, should not replicate the technical focus typically found in introductory computer science (CS) courses like CS1 and CS2. In this paper, we use an adjustable, interdisciplinary socio‐technical AI literacy framework to design and present an introductory AI literacy course. We present a refined version of this framework informed by the teaching of a 1‐credit general education AI literacy course (primarily for freshmen and first‐year students from various majors), a 3‐credit course for CS majors at all levels, and a summer camp for high school students. Drawing from these teaching experiences and the evolving research landscape, we propose an introductory AI literacy course design framework structured around four cross‐cutting pillars. These pillars encompass (1) understanding the scope and technical dimensions of AI technologies, (2) learning how to interact with (generative) AI technologies, (3) applying principles of critical, ethical, and responsible AI usage, and (4) analyzing implications of AI on society. We posit that achieving AI literacy is essential for all students, those pursuing AI‐related careers, and those following other educational or professional paths. This introductory course, positioned at the beginning of a program, creates a foundation for ongoing and advanced AI education. The course design approach is presented as a series of modules and subtopics under each pillar. We emphasize the importance of thoughtful instructional design, including pedagogy, expected learning outcomes, and assessment strategies. This approach not only integrates social and technical learning but also democratizes AI education across diverse student populations and equips all learners with the socio‐technical, multidisciplinary perspectives necessary to navigate and shape the ethical future of AI. 
    more » « less
  4. Abstract Data‐art inquiry is an arts‐integrated approach to data literacy learning that reflects the multidisciplinary nature of data literacy not often taught in school contexts. By layering critical reflection over conventional data inquiry processes, and by supporting creative expression about data, data‐art inquiry can support students' informal inference‐making by revealing the role of context in shaping the meaning of data, and encouraging consideration of the personal and social relevance of data. Data‐art inquiry additionally creates alternative entry points into data literacy by building on learners' non‐STEM interests. Supported by technology, it can provide accessible tools for students to reflect on and communicate about data in ways that can impact broader audiences. However, data‐art inquiry instruction faces many barriers to classroom implementation, particularly given the tendency for schools to structure learning with disciplinary silos, and to unequally prioritize mathematics and the arts. To explore the potential of data‐art inquiry in classroom contexts, we partnered with arts and mathematics teachers to co‐design and implement data‐art inquiry units. We implemented the units in four school contexts that differed in terms of the student population served, their curriculum priorities, and their technology infrastructure. We reflect on participant interviews, written reflections, and classroom data, to identify synergies and tensions between data literacy, technology, and the arts. Our findings highlight how contexts of implementation shape the possibilities and limitations for data‐art inquiry learning. To take full advantage of the potential for data‐art inquiry, curriculum design should account for and build on the opportunities and constraints of classroom contexts. Practitioner notesWhat is already known about this topicArts‐integrated instruction has underexplored potential for promoting students' data literacy, including their appreciation for the role of context and real‐world implications of data and for the personal and social relevance of data.Arts‐integrated instruction is difficult to implement in school contexts that are constrained by disciplinary silos.What this paper addsDescriptions of four data‐art inquiry units, which take an arts‐integrated approach to data literacy.Examples of the synergies and tensions observed between data literacy, technology, and the arts during classroom implementation in four different schools.Reflections on the role of school contexts in shaping disciplinary synergies and tensions.Implications for practice and/or policyArts‐integration offers opportunities for data literacy learning.Consideration of the unique resources and constraints of classroom contexts is critical for fulfilling the promises of data‐art inquiry learning.There is a need to develop school support specific to arts‐integrated data literacy instruction. 
    more » « less
  5. Westenberg, Dave J (Ed.)
    ABSTRACT Integrating primary scientific literature into Science, Technology, Engineering, and Mathematics (STEM) curricula enhances critical thinking, scientific literacy, and communication skills but presents challenges due to complex terminology and data interpretation barriers. To address these challenges, a scaffolded journal club approach was implemented in a Cancer Biology course. The course utilized Hypothes.is web-based annotations, methods presentations, figure annotations, and structured discussions to promote active engagement with the literature. Additionally, integrated science communication assignments—including written, graphical, and video abstracts—provided diverse opportunities for students to develop scientific literacy. This structured approach is designed to facilitate comprehension, encourage proactive learning, and foster confidence in engaging with primary scientific literature. Student feedback highlighted improved ability to dissect research articles, enhanced presentation skills, and increased enjoyment of scientific reading. The journal club model and science communication assignments offer a replicable framework for enhancing primary scientific literature engagement across various STEM disciplines and educational levels. 
    more » « less