Electropermanent magnetic (EPM) valves consist of two permanent magnets, one with high coercivity and one with relatively low coercivity, which are able to rapidly redirect the flux within a magnetic circuit. When combined with magnetorheological (MR) fluid, they provide the ability to rapidly switch flow in a hydraulic circuit on or off. EPM valves contain no moving parts and draw no power except when changing state. These facts, along with their scalability, make them an attractive option for distributed flow control in small hydraulic systems. Current examples of EPM valves are often restricted to relatively low-pressure or low-flow operation. Miniaturization of small-scale hydraulic robots, both soft and rigid, is limited by the availability of sufficiently lightweight, compact, and efficient components which are capable of directing fluid at pressures greater than 700 kPa. This research proposes an EPM valve which leverages the magnetic properties of MR fluid to channel magnetic flux through the fluid. To evaluate the proposed geometry, an exploratory prototype was constructed and evaluated using a test-bench capable of evaluating the valve as a flow resistance. Simulations were conducted to evaluate the design and validate the use of simulation for future design iteration. To be of use in robotic systems, this valve needs to be capable of rapidly switching relatively high pressures while maintaining a highly compact and easily manufactured form factor. Due to its size and low power consumption, it is suitable for distributed hydraulic control in miniature systems such as hydraulically-actuated robots, including soft robots.
more »
« less
Compressible Flow Through Flat Valve Seals at Microscale Displacements
Abstract Existing analytical flow models for predicting flow rates at microscale seal displacements are limited to two separate domains. The first assumes a small channel length to height aspect ratio at relatively large seal displacements. The second assumes a large channel length to height aspect ratio at relatively small seal displacements. A piecewise analytical model for compressible flow is developed here to enable predicting flow rates in valves with fluid pathways of any aspect ratio. The new model is validated by numerical studies and experiment. The results are applicable to flat valve seals having a cylindrical seal boss feature with fluid passage length to height aspect ratios ranging from 3.3 to 800. The new model is particularly useful for the design of microvalves and macroscale valves with small actuator displacements.
more »
« less
- Award ID(s):
- 2016330
- PAR ID:
- 10569924
- Publisher / Repository:
- American Society of Mechanical Engineers (ASME)
- Date Published:
- Journal Name:
- Journal of Fluids Engineering
- Volume:
- 146
- Issue:
- 11
- ISSN:
- 0098-2202
- Subject(s) / Keyword(s):
- compressible flow flow modeling flow control valve
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Predicting the transport of bedload tracer particles is a problem of significant theoretical and practical interest. Yet, little understanding exists for transport in rivers in the presence of bedforms, which may trap grains and thereby influence travel distance. In a series of flume experiments with a sandy gravel bed in a large experimental flume, bed elevation and tracer travel distances were measured at high resolution for a range of discharges. As discharge increased, bedform height increased and bedform length decreased, increasing bedform steepness. For all tracer sizes and flow conditions, bedforms act as primary controls on the tracer travel distances. Bedform trapping increases linearly with the ratio of bedform height to tracer grain size, with 50% trapping efficiency for a ratio of two and 90% trapping efficiency for a ratio of four. A theoretical model based on the extended active layer formulation for sediment transport is able to capture much of the distribution of measured travel distances for all tracer sizes and discharges, providing a first connection between tracer transport theory and bedform trapping and indicating normal diffusion of tracers at relatively small timescales. Variable bedform geometry can influence trap efficiency for individual bedforms and the theoretical model can help identify “preferential trapping” conditions. The distribution of tracer travel distances for a mixture of grain sizes and variable discharge, as expected in natural rivers, displays heavy tail characteristics.more » « less
-
A Eulerian—Lagrangian model has been developed to simulate particle attachment to surfaces with arc-shaped ribs in a two-dimensional channel flow at low Reynolds numbers. Numerical simulation has been performed to improve the quantitative understanding of how rib geometries enhance shear rates and particle-surface interact for various particle sizes and flow velocities. The enhanced shear rate is attributed to the wavy flows that develop over the ribbed surface and the weak vortices that form between adjacent ribs. Varying pitch-to-height ratio can alter the amplitude of the wavy flow and the angle of attack of the fluid on the ribs. In the presence of these two competing factors, the rib geometry with a pitch-to-height ratio of two demonstrates the greatest shear rate and the lowest fraction of particle attachment. However, the ribbed surfaces have negligible effects on small particles at low velocities. A force analysis identifies a threshold shear rate to reduce particle attachment. The simulated particle distributions over the ribbed surfaces are highly non-uniform for larger particles at higher velocities. The understanding of the effect of surface topography on particle attachment will benefit the design of surface textures for mitigating particulate fouling in a wide range of applications.more » « less
-
The motion and deformation of a neutrally buoyant drop in a rectangular channel experiencing a pressure-driven flow at a low Reynolds number has been investigated both experimentally and numerically. A moving-frame boundary-integral algorithm was used to simulate the drop dynamics, with a focus on steady-state drop velocity and deformation. Results are presented for drops of varying undeformed diameters relative to channel height ($$D/H$$), drop-to-bulk viscosity ratio ($$\lambda$$), capillary number ($$Ca$$, ratio of deforming viscous forces to shape-preserving interfacial tension) and initial position in the channel in a parameter space larger than considered previously. The general trend shows that the drop steady-state velocity decreases with increasing drop diameter and viscosity ratio but increases with increasing$$Ca$$. An opposite trend is seen for drops with small viscosity ratio, however, where the steady-state velocity increases with increasing$$D/H$$and can exceed the maximum background flow velocity. Experimental results verify theoretical predictions. A deformable drop with a size comparable to the channel height when placed off centre migrates towards the centreline and attains a steady state there. In general, a drop with a low viscosity ratio and high capillary number experiences faster cross-stream migration. With increasing aspect ratio, there is a competition between the effect of reduced wall interactions and lower maximum channel centreline velocity at fixed average velocity, with the former helping drops attain higher steady-state velocities at low aspect ratios, but the latter takes over at aspect ratios above approximately 1.5.more » « less
-
Depinning of liquid droplets on substrates by flow of a surrounding immiscible fluid is central to applications such as cross-flow microemulsification, oil recovery and waste cleanup. Surface roughness, either natural or engineered, can cause droplet pinning, so it is of both fundamental and practical interest to determine the flow strength of the surrounding fluid required for droplet depinning on rough substrates. Here, we develop a lubrication-theory-based model for droplet depinning on a substrate with topographical defects by flow of a surrounding immiscible fluid. The droplet and surrounding fluid are in a rectangular channel, a pressure gradient is imposed to drive flow and the defects are modelled as Gaussian-shaped bumps. Using a precursor-film/disjoining-pressure approach to capture contact-line motion, a nonlinear evolution equation is derived describing the droplet thickness as a function of distance along the channel and time. Numerical solutions of the evolution equation are used to investigate how the critical pressure gradient for droplet depinning depends on the viscosity ratio, surface wettability and droplet volume. Simple analytical models are able to account for many of the features observed in the numerical simulations. The influence of defect height is also investigated, and it is found that, when the maximum defect slope is larger than the receding contact angle of the droplet, smaller residual droplets are left behind at the defect after the original droplet depins and slides away. The model presented here yields considerably more information than commonly used models based on simple force balances, and provides a framework that can readily be extended to study more complicated situations involving chemical heterogeneity and three-dimensional effects.more » « less
An official website of the United States government

