skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Observations of Bedload Tracer Movement: Effects of Mixed Particle Sizes and Bedforms
Abstract Predicting the transport of bedload tracer particles is a problem of significant theoretical and practical interest. Yet, little understanding exists for transport in rivers in the presence of bedforms, which may trap grains and thereby influence travel distance. In a series of flume experiments with a sandy gravel bed in a large experimental flume, bed elevation and tracer travel distances were measured at high resolution for a range of discharges. As discharge increased, bedform height increased and bedform length decreased, increasing bedform steepness. For all tracer sizes and flow conditions, bedforms act as primary controls on the tracer travel distances. Bedform trapping increases linearly with the ratio of bedform height to tracer grain size, with 50% trapping efficiency for a ratio of two and 90% trapping efficiency for a ratio of four. A theoretical model based on the extended active layer formulation for sediment transport is able to capture much of the distribution of measured travel distances for all tracer sizes and discharges, providing a first connection between tracer transport theory and bedform trapping and indicating normal diffusion of tracers at relatively small timescales. Variable bedform geometry can influence trap efficiency for individual bedforms and the theoretical model can help identify “preferential trapping” conditions. The distribution of tracer travel distances for a mixture of grain sizes and variable discharge, as expected in natural rivers, displays heavy tail characteristics.  more » « less
Award ID(s):
1854452
PAR ID:
10415916
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Despite a rich history of studies investigating fluid dynamics over bedforms and dunes in rivers, the spatiotemporal patterns of sub-bedform bedload transport remain poorly understood. Previous experiments assessing the effects of flow separation on downstream fluid turbulent structures and bedload transport suggest that localized, intermittent, high-magnitude transport events (i.e., permeable splat events) play an important role in both downstream and cross-stream bedload transport near flow reattachment. Here, we report results from flume experiments that assess the combined effects of flow separation–reattachment and flow re-acceleration over fixed two-dimensional bedforms (1.7 cm high; 30 cm long). A high-speed camera observed bedload transport along the entirety of the bedform at 250 frames per second. Grain trajectories, grain velocities, and grain transport directions were acquired from bedload images using semiautomated particle-tracking techniques. Downstream and vertical fluid velocities were measured 3 mm above the bed using laser Doppler velocimetry (LDV) at 15 distances along the bedform profile. Mean downstream fluid velocity increases nonlinearly with increasing distance along the bedform. However, observed bedload transport increases linearly with increasing distance along the bedform, except at the crest of the bedform, where both mean downstream fluid velocity and bedload transport decrease substantially. Bedload transport time series and manual particle-tracking data show a zone of high-magnitude, cross-stream transport near flow reattachment, suggesting that permeable splat events play an essential role in the region downstream of flow reattachment. 
    more » « less
  2. Abstract Notwithstanding the large number of studies on bedforms such as dunes and antidunes, predicting equilibrium bedform type and geometry for a given flow regime, sediment supply and caliber remains an open problem. Here, we present results from laboratory experiments specifically designed to study how upper regime bedform type and geometry vary with sediment supply and caliber. Experiments were performed in a sediment feed flume with flow rates varying between 5 and 30 l/s and sand supply rates varying between 0.6 and 20 kg/min. We used both uniform and non‐uniform sands with geometric mean diameters varying between 0.22 and 0.87 mm. Analysis of our data and data available in the literature reveals that the ratio of total (bedload plus suspension) volume transport rate of sediment to water dischargeQs/Qwplays a prime control on upper regime equilibrium beds. Equilibrium bedforms transition from washed out dunes (lower regime) to downstream migrating antidunes (upper regime) forQs/Qwbetween 0.0003 and 0.0007. For values ofQs/Qwgreater than 0.0015, the bedform length increases withQs/Qw. At these high values ofQs/Qw, equilibrium in fine sand is characterized by upstream migrating antidunes, cyclic steps, and significant suspended load. In experiments with coarse sand, equilibrium is characterized by plane bed with bedload transport in sheet flow mode. Standing waves form at the transition between downstream migrating antidunes and upstream migrating bedforms. 
    more » « less
  3. Abstract While the ecological significance of hyporheic exchange and fine particle transport in rivers is well established, these processes are generally considered irrelevant to riverbed morphodynamics. We show that coupling between hyporheic exchange, suspended sediment deposition, and sand bedform motion strongly modulates morphodynamics and sorts bed sediments. Hyporheic exchange focuses fine-particle deposition within and below mobile bedforms, which suppresses bed mobility. However, deposited fines are also remobilized by bedform motion, providing a mechanism for segregating coarse and fine particles in the bed. Surprisingly, two distinct end states emerge from the competing interplay of bed stabilization and remobilization: a locked state in which fine particle deposition completely stabilizes the bed, and a dynamic equilibrium in which frequent remobilization sorts the bed and restores mobility. These findings demonstrate the significance of hyporheic exchange to riverbed morphodynamics and clarify how dynamic interactions between coarse and fine particles produce sedimentary patterns commonly found in rivers. 
    more » « less
  4. Abstract Microbes are known to shape topographies; however, mechanisms of biofilm‐sediment interactions and the dynamic evolution of biofilm‐covered bedforms remain poorly understood. Here, we explore the effects of synthetic biofilms on the geometry and temporal evolution of underwater bedforms through flume experiments. Our results demonstrate that synthetic biofilms can produce sedimentary structures similar to those formed by natural microbes, including wrinkles, pits, flip‐overs, roll‐ups, mat chips, and erosional edges. We observed the formation of wrinkles, a common geological feature, due to the accumulation of sand grains on the biofilms. Furthermore, we demonstrated that biofilms can reduce bed roughness by an order of magnitude in the low flow regime. However, the subsequent biofilm‐sediment interactions can increase local bedform size, forming multi‐scale geometries of bedforms. Our study improves the fundamental understanding of the landscape dynamics of bedforms covered by natural biofilms. 
    more » « less
  5. Abstract Bedform evolution and preserved cross strata are known to respond to floods. However, it is unclear if autogenic dynamics mask the flood signal in bedform evolution and cross strata. To address this, we characterize the temporal structure of autogenic noise in steady‐state bedform evolution in a physical experiment. Results reveal the existence of bedform groups—quasi‐stable collections of bedforms—that migrate at a similar speed as bedforms. We find that bedform and bedform‐group turnover timescales are the key autogenic timescales of bed evolution that set the transition time‐periods between different noise regimes in bedform evolution. Results suggest that bedform‐group turnover timescale sets the lower limit for detecting flood signals in bedform evolution, and floods with duration shorter than bedform turnover timescale can be severely degraded in bedform evolution and cross strata. Our work provides a new framework for interrogating fluvial cross strata for reconstruction of past floods. 
    more » « less