Abstract PremiseAcmopyle(Podocarpaceae) comprises two extant species from Oceania that are physiologically restricted to ever‐wet rainforests, a confirmed fossil record based on leaf adpressions and cuticles in Australia since the Paleocene, and a few uncertain reports from New Zealand, Antarctica, and South America. We investigated fossil specimens withAcmopyleaffinities from the early Eocene Laguna del Hunco site in Patagonia, Argentina. MethodsWe studied 42 adpression leafy‐shoot fossils and included them in a total evidence phylogenetic analysis. ResultsAcmopyle grayaesp. nov. is based on heterophyllous leafy shoots with three distinct leaf types. Among these, bilaterally flattened leaves uniquely preserve subparallel, linear features that we interpret as accessory transfusion tissue (ATT, an extra‐venous water‐conducting tissue). Some apical morphologies ofA. grayaeshoots are compatible with the early stages of ovuliferous cone development. Our phylogenetic analysis recovers the new species in a polytomy with the two extantAcmopylespecies. We report several types of insect‐herbivory damage. We also transferAcmopyle engelhardtifrom the middle Eocene Río Pichileufú flora toDacrycarpus engelhardticomb. nov. ConclusionsWe confirm the biogeographically significant presence of the endangered West Pacific genusAcmopylein Eocene Patagonia.Acmopyleis one of the most drought‐intolerant genera in Podocarpaceae, possibly due to the high collapse risk of the ATT, and thus the new fossil species provides physiological evidence for the presence of an ever‐wet rainforest environment at Laguna del Hunco during the Early Eocene Climatic Optimum. 
                        more » 
                        « less   
                    
                            
                            Fossil insect‐feeding traces indicate unrecognized evolutionary history and biodiversity on Australia's iconic Eucalyptus
                        
                    
    
            Summary Fossilized plant–insect herbivore associations provide fundamental information about the assembly of terrestrial communities through geologic time. However, fossil evidence of associations originating in deep time and persisting to the modern day is scarce.We studied the insect herbivore damage found on 284Eucalyptus frenguellianaleaves from the early Eocene Laguna del Hunco rainforest locality in Argentinean Patagonia and compared damage patterns with those observed on extant, rainforest‐associatedEucalyptusspecies from Australasia (> 10 000 herbarium sheets reviewed).In the fossil material, we identified 28 insect herbivory damage types, including 12 types of external feeding, one of piercing‐and‐sucking, five of galls, and 10 of mines. All 28 damage types were observed in the herbarium specimens.The finding of all the fossil damage types on extantEucalyptusspecimens suggests long‐standing associations between multiple insect herbivore lineages and their host genus spanning 52 million years across the Southern Hemisphere. This long‐term persistence, probably enabled through niche conservatism in wet eucalypt forests, demonstrates the imprint of fossil history on the composition of extant insect herbivore assemblages. Although the identities of most insect culprits remain unknown, we provide a list ofEucalyptusspecies and specific population locations to facilitate their discovery, highlighting the relevance of fossils in discovering extant biodiversity. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10570033
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 245
- Issue:
- 4
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 1762-1773
- Size(s):
- p. 1762-1773
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Agathis (Araucariaceae) is a genus of broadleaved conifers that today inhabits lowland to upper montane rainforests of Australasia and Southeast Asia. A previous report showed that the earliest known fossils of the genus, from the early Paleogene and possibly latest Cretaceous of Patagonian Argentina, host diverse assemblages of insect and fungal associations, including distinctive leaf mines. Here, we provide complete documentation of the fossilized Agathis herbivore communities from Cretaceous to Recent, describing and comparing insect and fungal damage on Agathis across four latest Cretaceous to early Paleogene time slices in Patagonia with that on 15 extant species. Notable fossil associations include various types of external foliage feeding, leaf mines, galls, and a rust fungus. In addition, enigmatic structures, possibly armored scale insect (Diaspididae) covers or galls, occur on Agathis over a 16-million-year period in the early Paleogene. The extant Agathis species, throughout the range of the genus, are associated with a diverse array of mostly undescribed damage similar to the fossils, demonstrating the importance of Agathis as a host of diverse insect herbivores and pathogens and their little-known evolutionary history. Keywords Araucariaceae, Gondwana, herbivory, plant-insect associationsmore » « less
- 
            Agathis (Araucariaceae) is a genus of broadleaved conifers that today inhabits lowland to upper montane rainforests of Australasia and Southeast Asia. A previous report showed that the earliest known fossils of the genus, from the early Paleogene and possibly latest Cretaceous of Patagonian Argentina, host diverse assemblages of insect and fungal associations, including distinctive leaf mines. Here, we provide complete documentation of the fossilized Agathis herbivore communities from Cretaceous to Recent, describing and comparing insect and fungal damage on Agathis across four latest Cretaceous to early Paleogene time slices in Patagonia with that on 15 extant species. Notable fossil associations include various types of external foliage feeding, leaf mines, galls, and a rust fungus. In addition, enigmatic structures, possibly armored scale insect (Diaspididae) covers or galls, occur on Agathis over a 16-million-year period in the early Paleogene. The extant Agathis species, throughout the range of the genus, are associated with a diverse array of mostly undescribed damage similar to the fossils, demonstrating the importance of Agathis as a host of diverse insect herbivores and pathogens and their little-known evolutionary history.more » « less
- 
            Abstract The widespread digitization of natural history collections, combined with novel tools and approaches is revolutionizing biodiversity science. The ‘extended specimen’ concept advocates a more holistic approach in which a specimen is framed as a diverse stream of interconnected data. Herbarium specimens that by their very nature capture multispecies relationships, such as certain parasites, fungi and lichens, hold great potential to provide a broader and more integrative view of the ecology and evolution of symbiotic interactions. This particularly applies to parasite–host associations, which owing to their interconnectedness are especially vulnerable to global environmental change.Here, we present an overview of how parasitic flowering plants is represented in herbarium collections. We then discuss the variety of data that can be gathered from parasitic plant specimens, and how they can be used to understand global change impacts at multiple scales. Finally, we review best practices for sampling parasitic plants in the field, and subsequently preparing and digitizing these specimens.Plant parasitism has evolved 12 times within angiosperms, and similar to other plant taxa, herbarium collections represent the foundation for analysing key aspects of their ecology and evolution. Yet these collections hold far greater potential. Data and metadata obtained from parasitic plant specimens can inform analyses of co‐distribution patterns, changes in eco‐physiology and species plasticity spanning temporal and spatial scales, chemical ecology of tripartite interactions (e.g. host–parasite–herbivore), and molecular data critical for species conservation. Moreover, owing to the historic nature and sheer size of global herbarium collections, these data provide the spatiotemporal breadth essential for investigating organismal response to global change.Parasitic plant specimens are primed to serve as ideal examples of extended specimen concept and help motivate the next generation of creative and impactful collection‐based science. Continued digitization efforts and improved curatorial practices will contribute to opening these specimens to a broader audience, allowing integrative research spanning multiple domains and offering novel opportunities for education.more » « less
- 
            Abstract Conspecific plant density and heterospecific frequency are key drivers of herbivore damage. However, most studies have investigated their effects separately and for single (rather than multiple) focal plant species.We conducted an experiment involving three tree species, namely:Cordia dodecandra(Boraginaceae),Manilkara zapota(Zapotaceae), andPiscidia piscipula(Fabaceae). We manipulated understory densities ofM. zapotaandC. dodecandra(focal species) and their frequency relative toP. piscipula.Three months after planting, we surveyed insect leaf chewer and sucking damage on the former two. Because these species are attacked by different herbivores, we predicted a negative effect of heterospecific frequency on herbivory.Density and frequency varied in the direction and function of their effects on herbivory depending on the plant species and attacking herbivore. As expected,Piscidia piscipulafrequency had a negative linear effect onM. zapotaleaf‐chewer damage, whereas conspecific density did not affect chewer damage on this species. In contrast, density and frequency had non‐linear effects onC. dodecandrachewer damage, namely positive (hump‐shaped) and negative (U‐shaped) relationships, respectively. In addition, density and frequency had positive linear effects onC. dondecandradamage by leafhoppers.These findings call for more work jointly assessing plant inter‐specific variation in density‐ and frequency‐dependent variation in herbivory and its underlying drivers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
