Wafer map pattern recognition is instrumental for detecting systemic manufacturing process issues. However, high cost in labeling wafer patterns renders it impossible to leverage large amounts of valuable unlabeled data in conventional machine learning based wafer map pattern prediction. We proposed a contrastive learning framework for semi-supervised learning and prediction of wafer map patterns. Our framework incorporates an encoder to learn good representation for wafer maps in an unsupervised manner, and a supervised head to recognize wafer map patterns. In particular, contrastive learning is applied for the unsupervised encoder representation learning supported by augmented data generated by different transformations (views) of wafer maps. We identified a set of transformations to effectively generate similar variants of each original pattern. We further proposed a novel rotation-twist transformation to augment wafer map data by rotating each given wafer map for which the angle of rotation is a smooth function of the radius. Experimental results demonstrate that the proposed semi-supervised learning framework greatly improves recognition accuracy compared to traditional supervised methods, and the rotation-twist transformation further enhances the recognition accuracy in both semi-supervised and supervised tasks.
more »
« less
WaferCap: Open Classification of Wafer Map Patterns using Deep Capsule Network
In integrated circuit design, analysis of wafer map patterns is critical to enhance yield and detect manufacturing issues. With the emergence of novel wafer map patterns, there is increasing need for robust artificial intelligence models that can both accurately classify seen patterns and while also detecting ones not seen during training, a capability known as open world classification. We develop a novel solution to this problem: WaferCap, a Deep Capsule Network designed for wafer map pattern classification and equipped with a rejection mechanism. When evaluated using the WM-811k dataset, WaferCap significantly surpasses existing methods, achieving 99\% accuracy for fully seen patterns while demonstrating robust performance in open-world settings by effectively detecting unseen wafer map patterns.
more »
« less
- Award ID(s):
- 2008167
- PAR ID:
- 10570103
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-6378-4
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Location:
- Tempe, AZ, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a novel approach called MINiature Interactive Offset Networks (or MINIONs). We use wafer map classification as an application example. A Minion is trained with a specially-designed one-shot learning scheme. A collection of Minions can be used to patch a master model. Experiment results are provided to explain the potential areas Minions can help and their unique benefits.more » « less
-
A fundamental limitation of applying semi-supervised learning in real-world settings is the assumption that unlabeled test data contains only classes previously encountered in the labeled training data. However, this assumption rarely holds for data in-the-wild, where instances belonging to novel classes may appear at testing time. Here, we introduce a novel open-world semi-supervised learning setting that formalizes the notion that novel classes may appear in the unlabeled test data. In this novel setting, the goal is to solve the class distribution mismatch between labeled and unlabeled data, where at the test time every input instance either needs to be classified into one of the existing classes or a new unseen class needs to be initialized. To tackle this challenging problem, we propose ORCA, an end-to-end deep learning approach that introduces uncertainty adaptive margin mechanism to circumvent the bias towards seen classes caused by learning discriminative features for seen classes faster than for the novel classes. In this way, ORCA reduces the gap between intra-class variance of seen with respect to novel classes. Experiments on image classification datasets and a single-cell annotation dataset demonstrate that ORCA consistently outperforms alternative baselines, achieving 25% improvement on seen and 96% improvement on novel classes of the ImageNet dataset.more » « less
-
Abstract This paper introduces a novel wafer-edge quality inspection method based on analysis of curved-edge diffractive fringe patterns, which occur when light is incident and diffracts around the wafer edge. The proposed method aims to identify various defect modes at the wafer edges, including particles, chipping, scratches, thin-film deposition, and hybrid defect cases. The diffraction patterns formed behind the wafer edge are influenced by various factors, including the edge geometry, topography, and the presence of defects. In this study, edge diffractive fringe patterns were obtained from two approaches: (1) a single photodiode collected curved-edge interferometric fringe patterns by scanning the wafer edge and (2) an imaging device coupled with an objective lens captured the fringe image. The first approach allowed the wafer apex characterization, while the second approach enabled simultaneous localization and characterization of wafer quality along two bevels and apex directions. The collected fringe patterns were analyzed by both statistical feature extraction and wavelet transform; corresponding features were also evaluated through logarithm approximation. In sum, both proposed wafer-edge inspection methods can effectively characterize various wafer-edge defect modes. Their potential lies in their applicability to online wafer metrology and inspection applications, thereby contributing to the advancement of wafer manufacturing processes.more » « less
-
Classic supervised learning makes the closed-world assumption that the classes seen in testing must have appeared in training. However, this assumption is often violated in real-world applications. For example, in a social media site, new topics emerge constantly and in e-commerce, new categories of products appear daily. A model that cannot detect new/unseen topics or products is hard to function well in such open environments. A desirable model working in such environments must be able to (1) reject examples from unseen classes (not appeared in training) and (2) incrementally learn the new/unseen classes to expand the existing model. This is called open-world learning (OWL). This paper proposes a new OWL method based on meta-learning. The key novelty is that the model maintains only a dynamic set of seen classes that allows new classes to be added or deleted with no need for model re-training. Each class is represented by a small set of training examples. In testing, the meta-classifier only uses the examples of the maintained seen classes (including the newly added classes) on-the-fly for classification and rejection. Experimental results with e-commerce product classification show that the proposed method is highly effective.more » « less
An official website of the United States government

