skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Generalized Apprenticeship Learning Framework for Modeling Heterogeneous Student Pedagogical Strategies
A key challenge in e-learning environments like Intelligent Tutoring Systems (ITSs) is to induce effective pedagogical policies efficiently. While Deep Reinforcement Learning (DRL) often suffers from \textbf{\emph{sample inefficiency}} and \textbf{\emph{reward function}} design difficulty, Apprenticeship Learning (AL) algorithms can overcome them. However, most AL algorithms can not handle heterogeneity as they assume all demonstrations are generated with a homogeneous policy driven by a single reward function. Still, some AL algorithms which consider heterogeneity, often can not generalize to large continuous state space and only work with discrete states. In this paper, we propose an expectation-maximization(EM)-EDM, a general AL framework to induce effective pedagogical policies from given optimal or near-optimal demonstrations, which are assumed to be driven by heterogeneous reward functions. We compare the effectiveness of the policies induced by our proposed EM-EDM against four AL-based baselines and two policies induced by DRL on two different but related tasks that involve pedagogical action prediction. Our overall results showed that, for both tasks, EM-EDM outperforms the four AL baselines across all performance metrics and the two DRL baselines. This suggests that EM-EDM can effectively model complex student pedagogical decision-making processes through the ability to manage a large, continuous state space and adapt to handle diverse and heterogeneous reward functions with very few given demonstrations.  more » « less
Award ID(s):
1651909
PAR ID:
10570154
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
EDM
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduces EM‑EDM, an AL framework using expectation‑maximization to model heterogeneous student pedagogical strategies across large continuous state spaces. EM‑EDM outperforms four AL baselines and two DRL policies on two pedagogical action prediction tasks. 
    more » « less
  2. Intelligent Tutoring Systems (ITSs) leverage AI to adapt to individual students, and many ITSs employ \emph{pedagogical policies} to decide what instructional action to take next in the face of alternatives. A number of researchers applied Reinforcement Learning (RL) and Deep RL (DRL) to induce effective pedagogical policies. Much of prior work, however, has been developed \emph{independently} for a specific ITS and \emph{cannot directly be applied to another}. In this work, we propose a \textbf{M}ulti-\textbf{T}ask \textbf{L}earning framework that combines Deep \textbf{BI}simulation \textbf{M}etrics and DRL, named \textbf{MTL-BIM}, to induce a unified pedagogical policies for two different ITSs across different domains: logic and probability. Based on empirical classroom results, our unified RL policy performed significantly better than the expert-crafted policies and independently induced DQN policies on both ITSs. 
    more » « less
  3. Pedagogical planners can provide adaptive support to students in narrative-centered learning environments by dynamically scaffolding student learning and tailoring problem scenarios. Reinforcement learning (RL) is frequently used for pedagogical planning in narrative-centered learning environments. However, RL-based pedagogical planning raises significant challenges due to the scarcity of data for training RL policies. Most prior work has relied on limited-size datasets and offline RL techniques for policy learning. Unfortunately, offline RL techniques do not support on-demand exploration and evaluation, which can adversely impact the quality of induced policies. To address the limitation of data scarcity and offline RL, we propose INSIGHT, an online RL framework for training data-driven pedagogical policies that optimize student learning in narrative-centered learning environments. The INSIGHT framework consists of three components: a narrative-centered learning environment simulator, a simulated student agent, and an RL-based pedagogical planner agent, which uses a reward metric that is associated with effective student learning processes. The framework enables the generation of synthetic data for on-demand exploration and evaluation of RL-based pedagogical planning. We have implemented INSIGHT with OpenAI Gym for a narrative-centered learning environment testbed with rule-based simulated student agents and a deep Q-learning-based pedagogical planner. Our results show that online deep RL algorithms can induce near-optimal pedagogical policies in the INSIGHT framework, while offline deep RL algorithms only find suboptimal policies even with large amounts of data. 
    more » « less
  4. Successful collaboration requires team members to stay aligned, especially in complex sequential tasks. Team members must dynamically coordinate which subtasks to perform and in what order. However, real-world constraints like partial observability and limited communication bandwidth often lead to suboptimal collaboration. Even among expert teams, the same task can be executed in multiple ways. To develop multi-agent systems and human-AI teams for such tasks, we are interested in data-driven learning of multimodal team behaviors. Multi-Agent Imitation Learning (MAIL) provides a promising framework for data-driven learning of team behavior from demonstrations, but existing methods struggle with heterogeneous demonstrations, as they assume that all demonstrations originate from a single team policy. Hence, in this work, we introduce DTIL: a hierarchical MAIL algorithm designed to learn multimodal team behaviors in complex sequential tasks. DTIL represents each team member with a hierarchical policy and learns these policies from heterogeneous team demonstrations in a factored manner. By employing a distribution-matching approach, DTIL mitigates compounding errors and scales effectively to long horizons and continuous state representations. Experimental results show that DTIL outperforms MAIL baselines and accurately models team behavior across a variety of collaborative scenarios. 
    more » « less
  5. null (Ed.)
    In recent years, Reinforcement learning (RL), especially Deep RL (DRL), has shown outstanding performance in video games from Atari, Mario, to StarCraft. However, little evidence has shown that DRL can be successfully applied to real-life human-centric tasks such as education or healthcare. Different from classic game-playing where the RL goal is to make an agent smart, in human-centric tasks the ultimate RL goal is to make the human-agent interactions productive and fruitful. Additionally, in many real-life human-centric tasks, data can be noisy and limited. As a sub-field of RL, batch RL is designed for handling situations where data is limited yet noisy, and building simulations is challenging. In two consecutive classroom studies, we investigated applying batch DRL to the task of pedagogical policy induction for an Intelligent Tutoring System (ITS), and empirically evaluated the effectiveness of induced pedagogical policies. In Fall 2018 (F18), the DRL policy is compared against an expert-designed baseline policy and in Spring 2019 (S19), we examined the impact of explaining the batch DRL-induced policy with student decisions and the expert baseline policy. Our results showed that 1) while no significant difference was found between the batch RL-induced policy and the expert policy in F18, the batch RL-induced policy with simple explanations significantly improved students’ learning performance more than the expert policy alone in S19; and 2) no significant differences were found between the student decision making and the expert policy. Overall, our results suggest that pairing simple explanations with induced RL policies can be an important and effective technique for applying RL to real-life human-centric tasks. 
    more » « less