skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE): Leaf Litter Decomposition 2012-2014
Decomposition of leaf litter is a major source of nutrient transfer from vegetation to soils and an important carbon flux. In northern hardwood forests, litter decomposition might be affected by nutrient availability, species composition, stand age or structure, or access by soil decomposers. We investigated these factors in four stands at the Bartlett Experimental Forest in New Hampshire that have had nitrogen and phosphorus added in full factorial design since 2011. Leaf litter of early and late successional species was collected in 2012 and deployed in bags of two mesh sizes (63 µm and 2 mm) in two young and two mature stands and collected three times over the next 2 years. Decomposition was evaluated by fitting mass loss as an exponential function of time represented by growing degree days. Litter decomposed more quickly in the small mesh bags (p < 0.001), which excluded mesofauna. This result was surprising, but might be explained by the greater rigidity of the large mesh material making poor contact with the soil. The litter with a species composition characteristic of our young stands decomposed more quickly than the litter representing mature stands (p = 0.01 for species mix in the full model). The environment in which is was placed was not as important: Neither the age of the stand in which it was placed (p = 0.31), nor N addition (p = 0.59), P addition (p = 0.41), or the interaction of N and P addition (p = 0.13) were significant predictors of the decomposition rate, defined by fitting an exponential decay constant. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 Litter was collected by Rick Bicher and sorted by species by middle school students. Litterbags were made, filled, and weighed by middle school students. Gracie Gilcrist and Jeff Merriam generated data for the chemical analyses.  more » « less
Award ID(s):
1637685 2224545
PAR ID:
10570506
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In northern hardwood forests, litter decomposition might be affected by nutrient availability, species composition, stand age, or access by decomposers. We investigated these factors at the Bartlett Experimental Forest in New Hampshire. Leaf litter of early and late successional species was collected from four stands that had full factorial nitrogen and phosphorus additions to the soil and were deployed in bags of two mesh sizes (63 µm and 2 mm) in two young and two mature stands. Litter bags were collected three times over the next 2 years, and mass loss was described as an exponential function of time represented by a thermal sum. Litter from young stands had higher initial N and P concentrations and decomposed more quickly than litter from mature stands (p = 0.005), regardless of where it was deployed. Litter decomposed more quickly in fine mesh bags that excluded mesofauna (p < 0.001), which might be explained by the greater rigidity of the large mesh material making poor contact with the soil. Neither nutrient addition (p = 0.94 for N, p = 0.26 for P) nor the age of the stand in which bags were deployed (p = 0.36) had a detectable effect on rates of litter decomposition. 
    more » « less
  2. Abstract Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world. 
    more » « less
  3. Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern US, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12oC temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world. 
    more » « less
  4. Abstract Bark decomposition is an underexamined component of soil carbon cycling and soil community assembly. Numerous studies have shown faster decomposition of leaf litter in “home” environments (i.e. within soil adjacent to the plant that produced the leaves), suggesting potential legacy effects from previous deposition of similar litter. This is expected to occur through, in part, accumulation of microorganisms that metabolize substrates the litter provides. Whether a similar “home-field advantage” (HFA) exists for bark decomposition is unknown, but this dynamic may differ because annual bark deposits to soil are minimal relative to leaf deposits. We hypothesized that (1) as with leaf litter, bark will be better decomposed near to the tree from which it was collected, and (2) that decomposing bark can initiate change in soil microbial composition. To test these hypotheses, we used a full factorial design that included two bark types (collected from eastern hemlock, Tsuga canadensis , and white oak, Quercus alba ) and two soil types (‘home’ and ‘away’) within a temperate mixed hardwood forest at the Shale Hills Catchment in central Pennsylvania, USA. Bark was excised from 25 replicates of each tree type, buried in either home or away soil, and incubated belowground from July 2017 to June 2018. Decomposition was assessed through proportionate mass loss over time, while microbial composition in the bark and adjacent soil was assessed through high-throughput sequencing of 16S rRNA gene and fungal ITS fragments. Overall, bark degraded faster in white oak soils, and there was also an effect of bark type on decomposition. Although white oak bark decomposed more quickly in its home environment, this could be due to either soil conditioning or inherent differences in the soils in which each species grows. Soil microbial assemblages also sorted according to bark type rather than soil type, suggesting that bark strongly influences the composition of nearby microorganisms during decomposition. Our results suggest that both bark type and soil type are important factors during bark decomposition, but our findings suggest no clear evidence for HFA. 
    more » « less
  5. Midwestern forests are currently impacted by two prominent invaders, the emerald ash borer (EAB; Agrilus planipennis) and Amur honeysuckle (AHS; Lonicera maackii). The loss of ash (Fraxinus spp.) trees due to EAB invasion can further facilitate AHS invasion, driving changes in the composition of forest leaf litter to reflect a greater portion of labile, more easily decomposed litter. To evaluate the extent to which these changes alter ecosystem function, we conducted litter bag and culture-based decomposition experiments using leaf litter from sugar maple (Acer saccharum), oak (Quercus spp.), black ash (Fraxinus nigra), green ash (Fraxinus pennsylvanica), spicebush (Lindera benzoin) and AHS. To further understand the mechanism driving differences in decay rates, we inoculated six species of decomposing fungi separately onto both single species and multispecies (half AHS and half native species) leaf litter and measured decomposition rate, fungal growth and enzymatic activity in laboratory-based cultures. AHS leaf litter decomposed faster, had increased fungal growth, and had higher activity for carbon degrading enzymes compared to native species leaf litter. Furthermore, multispecies mixtures followed the same patterns as AHS, suggesting that the addition of AHS to leaf litter to native litter will accelerate ecosystem functions related to carbon breakdown. Consequently, forests that experience the invasion of AHS and EAB induced loss of ash are likely to have faster rates of decomposition, potentially resulting in an influx of available nutrients. 
    more » « less