skip to main content


Title: Bark decomposition in white oak soil outperforms eastern hemlock soil, while bark type leads to consistent changes in soil microbial composition
Abstract Bark decomposition is an underexamined component of soil carbon cycling and soil community assembly. Numerous studies have shown faster decomposition of leaf litter in “home” environments (i.e. within soil adjacent to the plant that produced the leaves), suggesting potential legacy effects from previous deposition of similar litter. This is expected to occur through, in part, accumulation of microorganisms that metabolize substrates the litter provides. Whether a similar “home-field advantage” (HFA) exists for bark decomposition is unknown, but this dynamic may differ because annual bark deposits to soil are minimal relative to leaf deposits. We hypothesized that (1) as with leaf litter, bark will be better decomposed near to the tree from which it was collected, and (2) that decomposing bark can initiate change in soil microbial composition. To test these hypotheses, we used a full factorial design that included two bark types (collected from eastern hemlock, Tsuga canadensis , and white oak, Quercus alba ) and two soil types (‘home’ and ‘away’) within a temperate mixed hardwood forest at the Shale Hills Catchment in central Pennsylvania, USA. Bark was excised from 25 replicates of each tree type, buried in either home or away soil, and incubated belowground from July 2017 to June 2018. Decomposition was assessed through proportionate mass loss over time, while microbial composition in the bark and adjacent soil was assessed through high-throughput sequencing of 16S rRNA gene and fungal ITS fragments. Overall, bark degraded faster in white oak soils, and there was also an effect of bark type on decomposition. Although white oak bark decomposed more quickly in its home environment, this could be due to either soil conditioning or inherent differences in the soils in which each species grows. Soil microbial assemblages also sorted according to bark type rather than soil type, suggesting that bark strongly influences the composition of nearby microorganisms during decomposition. Our results suggest that both bark type and soil type are important factors during bark decomposition, but our findings suggest no clear evidence for HFA.  more » « less
Award ID(s):
1331726 1239285 0725019
NSF-PAR ID:
10313533
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biogeochemistry
Volume:
150
Issue:
3
ISSN:
0168-2563
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Soil biota are increasingly recognized as a primary control on litter decomposition at both local and regional scales, but the precise mechanisms by which biota influence litter decomposition have yet to be identified.

    There are multiple hypothesized mechanisms by which biotic communities may influence litter decomposition—for example, decomposer communities may be specially adapted to local litter inputs and therefore decompose litter from their home ecosystem at elevated rates. This mechanism is known as the home‐field advantage (HFA) hypothesis. Alternatively, litter decomposition rates may simply depend upon the range of metabolic functions present within a decomposer community. This mechanism is known as the functional breadth (FB) hypothesis. However, the relative importance of HFA and FB in litter decomposition is unknown, as are the microbial community drivers of HFA and FB. Potential relationships/trade‐offs between microbial HFA and FB are also unknown.

    To investigate the roles of HFA and FB in litter decomposition, we collected litter and soil from six different ecosystems across the continental US and conducted a full factorial litter × soil inoculum experiment. We measured litter decomposition (i.e. cumulative CO2‐C respired) over 150 days and used an analytical model to calculate the HFA and FB of each microbial decomposer community.

    Our results indicated clear functional differences among decomposer communities, that is, litter sources were decomposed differently by different decomposer communities. These differences were primarily due to differences in FB between different communities, while HFA effects were less evident.

    We observed a positive relationship between HFA and the disturbance‐sensitive bacterial phylum Verruomicrobia, suggesting that HFA may be an important mechanism in undisturbed environments. We also observed a negative relationship between bacterial r versus K strategists and FB, suggesting an important link between microbial life‐history strategies and litter decomposition functions.

    Microbial FB and HFA exhibited a strong unimodal relationship, where high HFA was observed at intermediate FB values, while low HFA was associated with both low and high FB. This suggests that adaptation of decomposers to local plant inputs (i.e. high HFA) constrains FB, which requires broad rather than specialized functionality. Furthermore, this relationship suggests that HFA effects will not be apparent when communities exhibit high FB and therefore decompose all litters well and also when FB is low and communities decompose all litters poorly. Overall, our study provides new insights into the mechanisms by which microbial communities influence the decomposition of leaf litter.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    The “Gadgil effect” hypothesizes that root associations may slow down decomposition through pre‐emptive competition. In the context of recalcitrant litter decomposition, specifically coarse wood debris, it is uncertain as to what is the relative importance of soil communities associated with living roots when compared to those without roots. Here, it is hypothesized that the presence of live roots and active photosynthates will enhance wood decomposition. To test this hypothesis, the presence or absence of temperate tree roots was used in this study. Sugar maple (Acer saccharum) and white oak (Quercus alba) roots were manipulated at three sites of either limestone or shale parent rock residuum. At each site, wood substrate was placed in soils beneath the canopy of eitherA. saccharumorQ. alba, while in the presence of roots (root+). At the same time, wood substrate was placed in the same soil community, but live root exposure was eliminated by trenching (root). This eliminated active photosynthate supply to the soil microbial community. Results determined that live root exposure promoted faster decomposition and greater mycelial colonization of wood substrate. Also, sites of shale parent rock residuum had higher rates of decomposition in comparison with limestone parent rock residuum. Although additional work is needed to determine the extent in which roots and lithology can facilitate wood decomposition, these findings suggest that living roots impact decomposers and provide a pathway towards humus and soil organic matter formation.

     
    more » « less
  3. Summary

    Pyrogenic savannas with a tree–grassland ‘matrix’ experience frequent fires (i.e. every 1–3 yr). Aboveground responses to frequent fires have been well studied, but responses of fungal litter decomposers, which directly affect fuels, remain poorly known. We hypothesized that each fire reorganizes belowground communities and slows litter decomposition, thereby influencing savanna fuel dynamics.

    In a pine savanna, we established patches near and away from pines that were either burned or unburned in that year. Within patches, we assessed fungal communities and microbial decomposition of newly deposited litter. Soil variables and plant communities were also assessed as proximate drivers of fungal communities.

    Fungal communities, but not soil variables or vegetation, differed substantially between burned and unburned patches. Saprotrophic fungi dominated in unburned patches but decreased in richness and relative abundance after fire. Differences in fungal communities with fire were greater in litter than in soils, but unaffected by pine proximity. Litter decomposed more slowly in burned than in unburned patches.

    Fires drive shifts between fire‐adapted and sensitive fungal taxa in pine savannas. Slower fuel decomposition in accordance with saprotroph declines should enhance fuel accumulation and could impact future fire characteristics. Thus, fire reorganization of fungal communities may enhance persistence of these fire‐adapted ecosystems.

     
    more » « less
  4. Abstract

    Recent evidence suggests that, similar to larger organisms, dispersal is a key driver of microbiome assembly; however, our understanding of the rates and taxonomic composition of microbial dispersal in natural environments is limited. Here, we characterized the rate and composition of bacteria dispersing into surface soil via three dispersal routes (from the air above the vegetation, from nearby vegetation and leaf litter near the soil surface, and from the bulk soil and litter below the top layer). We then quantified the impact of those routes on microbial community composition and functioning in the topmost litter layer. The bacterial dispersal rate onto the surface layer was low (7900 cells/cm2/day) relative to the abundance of the resident community. While bacteria dispersed through all three routes at the same rate, only dispersal from above and near the soil surface impacted microbiome composition, suggesting that the composition, not rate, of dispersal influenced community assembly. Dispersal also impacted microbiome functioning. When exposed to dispersal, leaf litter decomposed faster than when dispersal was excluded, although neither decomposition rate nor litter chemistry differed by route. Overall, we conclude that the dispersal routes transport distinct bacterial communities that differentially influence the composition of the surface soil microbiome.

     
    more » « less
  5. Abstract

    Litter decomposition facilitates the recycling of often limiting resources, which may promote plant productivity responses to diversity, that is, overyielding. However, the direct relationship between decomposition,k, and overyielding remains underexplored in grassland diversity manipulations.

    We test whether local adaptation of microbes, that is, home‐field advantage (HFA), N‐priming from plant inputs or precipitation drive decomposition and whether decomposition generates overyielding. Within a grassland diversity‐manipulation, altering plant richness (1, 2, 3 and 6 species), composition (communities composed of plants from a single‐family or multiple‐families) and precipitation (50% and 150% ambient growing season precipitation), we conducted a litter decomposition experiment. In spring 2020, we deployed four replicate switchgrass,Panicum virgatum, litter bags (1.59 mm mesh opening), collecting them over 7 months to estimate litterk.

    Precipitation was a strong, independent driver of decomposition. Switchgrass decomposition accelerated with grass richness and decelerated as phylogenetic dissimilarity from switchgrass increased, suggesting decomposition is fastest at ‘home’. However, decomposition slowed with switchgrass density. In plots that contained switchgrass, we observed no relationship between decomposition and fungal saprotroph dissimilarity from switchgrass. However, in plots without switchgrass, decomposition slowed with increasing saprotroph dissimilarity from switchgrass. Combined these findings suggest that HFA is strongest when closely related neighbours, that is, heterospecific neighbours, are present in the community, rather than other individuals of the same species, that is, conspecifics. Legumes accelerated decomposition with more litter N remaining in those plots, suggesting that N‐inputs from planted legumes are priming decomposition of litter C. However, decomposition and overyielding were unrelated in legume communities. While in grass communities, overyielding and decomposition were positively related and the relationship was strongest in plots with low densities of switchgrass, that is, with heterospecific neighbours.

    Combined these findings suggest that plant species richness and community composition stimulate litter decomposition through multiple mechanisms, including N‐priming, but only HFA from local adaptation of microbes on closely related species correlates with overyielding, likely through resource recycling. Our results link diversity with ecosystem processes facilitating above‐ground productivity. Whether diversity loss will affect litter decomposition, productivity or both is contingent on resident plant traits and whether a locally adapted soil microbiome is maintained.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less