Abstract Drift periodic echoes of electrons in the inner belt appear as structured bands in energy spectrograms, also known as “zebra stripes”. Such phenomenon is normally observed at energies from 10s of keV to ∼250 keV. We report multiple series of zebra stripes of relativistic electrons observed by the recent Colorado Inner Radiation Belt Experiment (CIRBE) CubeSat. The high energy resolution measurements taken by the REPTile‐2 (Relativistic Electron and Proton Telescope integrated little experiment‐2) instrument onboard CIRBE show that zebra stripes of radiation belt electrons can be observed from 300 keV to >1 MeV, crossing theLrange from 1.18 to >3, from quiet times to storm times. Through test particle simulations, we show that a prompt electric field with a peak amplitude ∼5 mV/m in near‐Earth space can trigger zebra stripes of relativistic electrons. Azimuthal inhomogeneity of electron distribution caused by the prompt electric field modulates the electron energy spectrum by energy‐dependent drift phases to form zebra stripes. Though zebra stripes are observed in both belts, they tend to last longer and appear more frequently in the inner belt. Zebra stripes in the outer belt will have a shorter lifetime due to more perturbations there, including energy and pitch‐angle diffusion, which diminish the structure. This study demonstrates the important role of electric fields in the dynamics of relativistic electrons and contributes to the understanding of the mechanisms creating and diminishing zebra stripes.
more »
« less
A New Electron and Proton Radiation Belt Identified by CIRBE/REPTile‐2 Measurements After the Magnetic Super Storm of 10 May 2024
Abstract Following the largest magnetic storm in 20 years (10 May 2024), REPTile‐2 on NASA's CIRBE satellite identified two new radiation belts containing 1.3–5 MeV electrons aroundL = 2.5–3.5 and 6.8–20 MeV protons aroundL = 2. The region aroundL = 2.5–3.5 is usually devoid of relativistic electrons due to wave‐particle interactions that scatter them into the atmosphere. However, these 1.3–5 MeV electrons in this new belt seemed unaffected until a magnetic storm on 28 June 2024, perturbed the region. The long‐lasting nature of this new electron belt has physical implications for the dependence of electron wave‐particle interactions on energy, plasma density, and magnetic field strength. The enhancement of protons aroundL = 2 exceeded an order of magnitude between 6.8 and 15 MeV forming a distinct new proton belt that appears even more stable. CIRBE, after a year of successful operation, malfunctioned 25 days before the super storm but returned to functionality 1 month after the storm, enabling these discoveries.
more »
« less
- Award ID(s):
- 2348553
- PAR ID:
- 10570543
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 2
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electrons in Earth's outer radiation belt are highly dynamic, with fluxes changing by up to orders of magnitude. The penetration of electrons from the outer belt to the inner belt is one such change observed during geomagnetic storms and was previously observed in electrons up to 1 MeV for some strong storms observed by the Van Allen Probes. We analyze pulse height analysis data from the Relativistic Electric and Proton Telescope (REPT) on the Van Allen Probes to produce electron flux measurements with lower minimum energy and significantly improved resolution compared to the standard REPT data and show that electron penetrations into the inner belt (L ≤ 2) extend to at least 1.3 MeV and penetrations into the slot region (2 < L < 2.8) extend to at least 1.5 MeV during certain geomagnetic storms. We also demonstrate that these penetrations are associated with butterfly pitch angle distributions from 1 to 1.3 MeV.more » « less
-
Abstract Deep penetration of energetic electrons (10s–100s of keV) to lowL‐shells (L < 4), as an important source of inner belt electrons, is commonly observed during geomagnetically active times. However, such deep penetration is not observed as frequently for similar energy protons, for which underlying mechanisms are not fully understood. To study their differential deep penetration, we conducted a statistical analysis using phase space densities (PSDs) ofµ = 10–50 MeV/G,K = 0.14 G1/2Re electrons and protons from multiyear Van Allen Probes observations. The results suggest systematic differences in electron and proton deep penetration: electron PSD enhancements at lowL‐shells occur more frequently, deeply, and faster than protons. Forµ = 10–50 MeV/G electrons, the occurrence rate of deep penetration events (defined as daily‐averaged PSD enhanced by at least a factor of 2 within a day atL < 4) is ∼2–3 events/month. For protons, only ∼1 event/month was observed forµ = 10 MeV/G, and much fewer events were identified forµ > 20 MeV/G. Leveraging dual‐Probe configurations, fast electron deep penetrations atL < 4 are revealed: ∼70% of electron deep penetration events occurred within ∼9 hr; ∼8%–13% occurred even within 3 hr, with lower‐µelectrons penetrating faster than higher‐µelectrons. These results suggest nondiffusive radial transport as the main mechanism of electron deep penetrations. In comparison, proton deep penetration happens at a slower pace. Statistics also show that the electron PSD radial gradient is much steeper than protons prior to deep penetration events, which can be responsible for these differential behaviors of electron and proton deep penetrations.more » « less
-
Abstract Solar Energetic Particles (SEPs) are present during increased solar activity, often associated with solar flares and coronal mass ejections (CMEs). Measuring and understanding these particles is important both for fundamental solar physics knowledge as well as the determination of radiation risks in interplanetary space. Solid‐state particle telescopes are a useful tool to measure these particles. The Relativistic Electron and Proton Telescope integrated little experiment‐2 (REPTile‐2) was a solid‐state energetic particle telescope that flew onboard the Colorado Inner Radiation Belt Experiment (CIRBE) and demonstrated a capability to measure electrons from 0.25 to 6 MeV and protons from 7 to 100 MeV with high energy and time resolution. REPTile‐2 operated in a low‐Earth orbit (LEO) and primarily measured radiation belt particles but was also able to measure SEPs during high‐latitude passes. Because of REPTile‐2's solid performance and its CubeSat‐scale size, weight, and power, an opportunity arose to fly a modified REPTile‐2, dubbed REPTile‐3, on the Emirates Mission to the Asteroid Belt (EMA). In this paper, Geometry and tracking 4 (Geant4) Monte Carlo simulations are used to motivate changes to improve REPTile‐3's ability to measure SEPs. Additionally, full instrument response functions and estimated count rates are used to understand the instrument's response to SEP fluxes. REPTile‐3 is shown to be able to measure 1.2–35 MeV protons with ΔE/E < 9%, 35–100 MeV protons with ΔE/E < 50%, 0.1–5 MeV electrons with ΔE/E < 14%, 18–131 MeV helium ions with ΔE/E < 7%, and 131–200 MeV helium ions with ΔE/E < 50% with a 102° field of view (FOV).more » « less
-
Abstract Radiation Belt Storm Probes (RBSP) data show that seed electrons generated by sub‐storm injections play a role in amplifying chorus waves in the magnetosphere. The wave‐particle interaction leads to rapid heating and acceleration of electrons from 10's of keV to 10's of MeV energies. In this work, we examined the changes in the radiation belt during geomagnetic storm events by studying the RBSP REPT, solar wind, AL, SML, and Dst data in conjunction with the WINDMI model of the magnetosphere. The field‐aligned current output from the model is integrated to generate a proxy E index for various energy bands. These E indices track electron energization from 40 KeV to 20 MeV in the radiation belts. The indices are compared to RBSP data and GOES data. Our proxy indices correspond well to the energization data for electron energy bands between 1.8 and 7.7 MeV. Each E index has a unique empirical loss rate term (τL), an empirical time delay term (τD), and a gain value, that are fit to the observations. These empirical parameters were adjusted to examine the delay and charging rates associated with different energy bands. We observed that theτLandτDvalues are clustered for each energy band.τLandτDconsistently increase going from 1.8 to 7.7 MeV in electron energy fluxEeand the dropout interval increases with increasing energy level. The average trend of ΔτD/ΔEewas 4.1 hr/MeV and the average trend of ΔτL/ΔEewas 2.82 hr/MeV.more » « less
An official website of the United States government
