Generation of realistic scenarios is an important prerequisite for analyzing the reliability of renewable-rich power systems. This paper satisfies this need by presenting an end-to-end model-free approach for creating representative power system scenarios on a seasonal basis. A conditional recurrent generative adversarial network serves as the main engine for scenario generation. Compared to prior scenario generation models that treated the variables independently or focused on short-term forecasting, the proposed implicit generative model effectively captures the cross-correlations that exist between the variables considering long-term planning. The validity of the scenarios generated using the proposed approach is demonstrated through extensive statistical evaluation and investigation of end-application results. It is shown that analysis of abnormal scenarios, which is more critical for power system resource planning, benefits the most from cross-correlated scenario generation.
more »
« less
Comparing scenario reduction methods for stochastic transmission planning
Policy, technology, and economic uncertainties affect the net benefits of grid reinforcements, and should be considered in planning. Stochastic optimisation can improve the robustness and expected performance of transmission plans, but is computationally intensive because model size grows as more scenarios are considered. Therefore, the ability to find a small number of scenarios while still capturing the benefits of stochastic programming is crucial. In this study, the authors evaluate the performance of several promising scenario sampling methods. Criteria for comparison include an index of the economic consequences of simplifying scenarios (the expected cost of naïve solution), changes in first‐stage investment decisions, and maximum regret. The results of an application to multidecadal planning of the Western Electricity Coordinating Council system show that solutions perform well when based on scenarios chosen by either a distance‐based method or the stratified scenario section method with moment‐matched probabilities. In particular, for this application, these methods’ results closely resemble solutions obtained from a much larger model using the full scenario set, and surprisingly have a lower worst case regret. Thus, careful scenario reduction can result in useful models that are more easily solved or, alternatively, can be expanded to accommodate other important features of power systems and markets.
more »
« less
- Award ID(s):
- 1736414
- PAR ID:
- 10570709
- Publisher / Repository:
- DOI PREFIX: 10.1049
- Date Published:
- Journal Name:
- IET Generation, Transmission & Distribution
- Volume:
- 13
- Issue:
- 7
- ISSN:
- 1751-8687
- Format(s):
- Medium: X Size: p. 1005-1013
- Size(s):
- p. 1005-1013
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A planning-oriented resilience assessment and enhancement approach is proposed that can efficiently deal with multi-type natural disasters. A unified disaster modelling framework is proposed to extract key information from various potential disaster scenarios, thus forming a disaster scenario database. The impact-increment-based enumeration method is applied, and a reusable impact-increment database is established to speed up the assessment process. The reusable database is also utilized to calculate component-level resilience indices and economic indices, so as to make enhancement strategies against potential disasters within planning time scale. Resilience assessment on an integrated electricity-gas system in Taiwan’s coastal seismic statistical zone shows that the proposed method can significantly improve the computational efficiency as compared to existing methods. Numerical results indicate that the resilient planning considering the diversity of natural disaster types comprehensively improves the system resilience, which means it is not only concerned with the system performance under a single type of disaster. In addition, the most suitable resilience enhancement scheme with insufficient funds shall be developed according to the economic indices, instead of the component-level resilience indices that cannot balance the resilience enhancement effect with the implementation cost.more » « less
-
Scenario reduction (SR) aims to identify a small yet representative scenario set to depict the underlying uncertainty, which is critical to scenario-based stochastic optimization (SBSO) of power systems. Existing SR techniques commonly aim to achieve statistical approximation to the original scenario set. However, SR and SBSO are commonly considered as two distinct and decoupled processes, which cannot guarantee a superior approximation of the original optimality. Instead, this paper incorporates the SBSO problem structure into the SR process and introduces a novel problem-driven scenario reduction (PDSR) framework. Specifically, we project the original scenario set in distribution space onto the mutual decision applicability between scenarios in problem space. Subsequently, the SR process, embedded by a distinctive problem-driven distance metric, is rendered as a mixed-integer linear programming formulation to obtain the representative scenario set while minimizing the optimality gap. Furthermore, ex-ante and ex-post problem-driven evaluation indices are proposed to evaluate the SR performance. Numerical experiments on two two-stage stochastic economic dispatch problems validate the effectiveness of PDSR, and demonstrate that PDSR significantly outperforms existing SR methods by identifying salient (e.g., worst-case) scenarios, and achieving an optimality gap of less than 0.1% within acceptable computation time.more » « less
-
We consider a prototypical path planning problem on a graph with uncertain cost of mobility on its edges. At a given node, the planning agent can access the true cost for edges to its neighbors and uses a noisy simulator to estimate the cost-to-go from the neighboring nodes. The objective of the planning agent is to select a neighboring node such that, with high probability, the cost-to-go is minimized for the worst possible realization of uncertain parameters in the simulator. By modeling the cost-to-go as a Gaussian process (GP) for every realization of the uncertain parameters, we apply a scenario approach in which we draw fixed independent samples of the uncertain parameter. We present a scenario-based iterative algorithm using the upper confidence bound (UCB) of the fixed independent scenarios to compute the choice of the neighbor to go to. We characterize the performance of the proposed algorithm in terms of a novel notion of regret defined with respect to an additional draw of the uncertain parameter, termed as scenario regret under re-draw. In particular, we characterize a high probability upper bound on the regret under re-draw for any finite number of iterations of the algorithm, and show that this upper bound tends to zero asymptotically with the number of iterations. We supplement our analysis with numerical results.more » « less
-
Utilizing millimeter-wave (mmWave) frequencies for wireless communication in mobile systems is challenging since it requires continuous tracking of the beam direction. Recently, beam tracking techniques based on channel sparsity and/or Kalman filter-based techniques were proposed where the solutions use assumptions regarding the environment and device mobility that may not hold in practical scenarios. In this paper, we explore a machine learning-based approach to track the angle of arrival (AoA) for specific paths in realistic scenarios. In particular, we use a recurrent neural network (R-NN) structure with a modified cost function to track the AoA. We propose methods to train the network in sequential data, and study the performance of our proposed solution in comparison to an extended Kalman filter based solution in a realistic mmWave scenario based on stochastic channel model from the QuaDRiGa framework. Results show that our proposed solution outperforms an extended Kalman filter-based method by reducing the AoA outage probability, and thus reducing the need for frequent beam search.more » « less
An official website of the United States government
