skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 16, 2025

Title: Investigating New Particle Formation and Growth Over an Urban Location in the Eastern Mediterranean
Abstract This study investigates the new particle formation (NPF) events at an urban location in the Eastern Mediterranean. Particle size distribution, particulate chemical composition, and gaseous pollutants were monitored in Rehovot, Israel (31°53″N 34°48″E) during two campaigns: from April 29 to 3 May 2021 (Campaign 1) and from May 3 to 11 May 2023 (Campaign 2), coinciding with an intensive bonfire burning festival. The organic aerosols (OA) source apportionment identified two major factors—Hydrocarbon‐like OA and Biomass‐burning OA—as well as two secondary factors—MO‐OOA (more oxidized‐oxygenated OA) and LO‐OOA (low oxidized oxygenated OA). NPF events were frequently observed during the day (mostly well‐defined nucleation events) and at night (burst of ultrafine mode particles without any discernible growth). A condensation sink value of (9.4 ± 4.0) × 10−3 s−1during Campaign 1 and (14.2 ± 6.0) × 10−3 s−1during Campaign 2 was obtained. The daytime events were associated with enhanced sulfuric acid proxy concentrations of (2–12) × 106molecules cm−3, suggesting the role of gas‐phase photochemistry in promoting NPF. A novel approach of hybrid positive matrix factorization analysis was used to deconvolve the chemical species responsible for the observed events. The results suggest the involvement of multiple components, including ammonium sulfate and MO‐OOA, in the nucleation; Nitrate, HOA and LO‐OOA participate in the subsequent particle growth for the daytime events. Nighttime events involve only semi‐volatile species (LO‐OOA, HOA and nitrate) along with ammonium sulfate.  more » « less
Award ID(s):
2039985
PAR ID:
10570722
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
23
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57′E, 30°46′N; 4730ma.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was  ∼ 2.0µgm−3, with organics accounting for 68%, followed by sulfate (15%), black carbon (8%), ammonium (7%), and nitrate (2%). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O∕C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O∕C ratio of 0.72), and an average O∕C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated organic aerosol (OOA) factors: a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). The MO-OOA dominated during the pre-monsoon period, whereas LO-OOA dominated during monsoon. The sensitivity of air mass transport during pre-monsoon with synoptic process was also evaluated with a 3-D chemical transport model. 
    more » « less
  2. The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40–75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na+ was substituted for NH4+. The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 107 M atm−1 (−50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO42-), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity. 
    more » « less
  3. Abstract. Understanding the properties and life cycle processes of aerosol particles inregional air masses is crucial for constraining the climate impacts ofaerosols on a global scale. In this study, characteristics of aerosols in theboundary layer (BL) and free troposphere (FT) of a remote continental regionin the western US were studied using a high-resolution time-of-flight aerosolmass spectrometer (HR-AMS) deployed at the Mount Bachelor Observatory (MBO;2763 m a.s.l.) in central Oregon in summer 2013. In the absence of wildfireinfluence, the average (±1σ) concentration of non-refractorysubmicrometer particulate matter (NR-PM1) at MBO was 2.8 (±2.8)µg m−3 and 84 % of the mass was organic. The otherNR-PM1 components were sulfate (11 %), ammonium (2.8 %),and nitrate (0.9 %). The organic aerosol (OA) at MBO from these cleanperiods showed clear diurnal variations driven by the boundary layer dynamicswith significantly higher concentrations occurring during daytime, upslopeconditions. NR-PM1 contained a higher mass fraction of sulfate andwas frequently acidic when MBO resided in the FT. In addition, OA in the FTwas found to be highly oxidized (average O∕C of 1.17) with lowvolatility while OA in BL-influenced air masses was moderately oxidized(average O∕C of 0.67) and semivolatile. There are indications thatthe BL-influenced OA observed at MBO was more enriched in organonitrates andorganosulfur compounds (e.g., MSA) and appeared to be representative ofbiogenic secondary organic aerosol (SOA) originated in the BL. A summary ofthe chemical compositions of NR-PM1 measured at a number of otherhigh-altitude locations in the world is presented and similar contrastsbetween FT and BL aerosols were observed. The significant compositional andphysical differences observed between FT and BL aerosols may have importantimplications for understanding the climate effects of regional backgroundaerosols. 
    more » « less
  4. Abstract To quantify the volatility of organic aerosols (OA), a comprehensive campaign was conducted in the Chinese megacity. Volatility distributions of OA and particle‐phase organic nitrate (pON) were estimated based on five methods: (a) empirical method and (b) kinetic model based on the measurement of a thermodenuder (TD) coupled with an aerosol mass spectrometer; (c) Formula‐based SIMPOL model‐driven method; (d) Element‐based estimations using molecular formula measurements of OA; and (e) gas/particle partitioning. Our results demonstrate that the ambient OA volatility distribution shows good agreement between the two heating methods and the formula‐based method when assuming ambient OA was mainly composed of organic nitrate (pON), organic sulfate and acid groups using the SIMPOL model. However, the element‐based method tends to overestimate the volatility of OA compared to the above three methods, suggesting large uncertainties in the parameterizations or in the representativeness of the molecular measurements that need further refinement. The volatility of ambient OA is generally lower than that of the laboratory‐derived secondary OA, emphasizing the impact of aging. A large fraction at the higher and lower volatility ranges (approximately logC* ≤ −9 and ≥2 μg m−3) was found for pON, implying the importance of both extremely low volatile and semi‐volatile species. Overall, this study evaluates different methods for volatility estimation and gives new insight into the volatility of OA and pON in urban areas. 
    more » « less
  5. The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs. 
    more » « less